Здоровая конкуренция
«РБК Тренды» представляют топ-10 медицинских технологий недалекого будущего, с помощью которых научное сообщество надеется победить редкие, тяжелые и трудноизлечимые заболевания настоящего
С развитием цифровых медицинских технологий, таких как 3D-печать органов и тканей человека, искусственного интеллекта (ИИ), виртуальная и дополненная реальности (VR/AR) и нанотехнологии, фантастические сценарии будущего стали воплощаться на наших глазах. В ближайшее время одни роботы будут оперировать наравне с людьми, а другие, размером с пекарские дрожжи, станут лечить сложные онкологические заболевания. Мы собрали подборку новейших медицинских технологий, которые уже совершили прорывы в индустрии в последние несколько лет и еще заявят о себе в скором будущем.
1Технология редактирования генома CRISPR-Cas9
Редактирование генов — перспективное направление молекулярной биологии. А одним из самых востребованных инструментов редактирования считается система CRISPR-Cas9. В 2020 году ученые Эмманюэль Шарпантье и Дженнифер Даудна получили за ее разработку Нобелевскую премию.
Система CRISPR-Cas — это часть адаптивного иммунитета бактерий и архей. Она состоит из двух блоков — CRISPR и Cas — и защищает своего хозяина от бактериальных вирусов на молекулярном уровне.
CRISPR — это участки на ДНК бактерий, внутрь которых встраивается информация о вирусах, которые когда-то нападали на клетку хозяина. Блок с уникальной информацией о конкретном вирусе называется спейсером. Информация в спейсерах позволяет CRISPR отслеживать повторное проникновение того же вируса.
Второй элемент этого молекулярного механизма — белок Cas. Он действует как молекулярные ножницы и разрезает на фрагменты чужеродные ДНК, которые проникают в клетку бактерии.
При повторном заражении бактерии CRISPR с помощью спейсера находит информацию о знакомой чужеродной ДНК и направляет белок Cas на точечное устранение патогена.
Есть целый ряд систем CRISPR-Cas, но чаще всего в лабораториях прибегают к наиболее прицельной технологии генетических ножниц — CRISPR-Cas9. Она оказалась быстрее, дешевле и точнее других методов редактирования. Система состоит из CRISPR, белка Cas9 и направляющей РНК (sgRNA). sgRNA указывает Cas9 на цель уничтожения. Белок Cas9 разрезает этот участок, затем запускается система восстановления клетки. А дальше биотехнологи внедряют нужную последовательность ДНК в целевой участок.
Даудна и Шарпантье выяснили, что такие системы работают не только в клетках бактерий. Их можно пересаживать в клетки высших организмов с помощью молекул-переносчиков. Молекула, внутри которой помещена система CRISPR-Cas9, внедряется в клетки и позволяет ученым использовать молекулярные ножницы в своих целях.
С помощью CRISPR-Cas9 становится проще изучать и лечить моногенные заболевания, такие как гемофилия, болезнь Альцгеймера, муковисцидоз, лейкемия и другие.
Так, в 2023 году впервые в мире одобрили терапию на основе CRISPR-Cas9. В Британии для лечения серповидноклеточной анемии и бета-талассемии будут использовать препарат с торговым названием Casgevy. При этих болезнях нарушается работа гемоглобина. Терапия проходит в три этапа. Пациент сдает кровь, клетки которой подвергаются генной модификации. Ученые «выключают» ген BCL11A в клетках крови. Дело в том, что во время развития плода в его организме вырабатывается особый — фетальный — тип гемоглобина. Ген BCL11A подавляет выработку фетального гемоглобина после рождения человека. После генной модификации выработка фетального гемоглобина возобновляется, и он постепенно заменяет гемоглобин взрослого человека. Затем отредактированные клетки крови вводят пациенту обратно. Весь процесс занимает несколько месяцев, а терапевтический эффект, как считают ученые, распространяется на долгие годы.
2мРНК-вакцины
В 2023 году лауреатами Нобелевской премии по физиологии и медицине стали биохимики Каталин Карико и Дрю Вайсман. Свою награду они получили за разработку технологии, которая позволила быстро создать эффективные мРНК-вакцины против COVID-19. Так, на 63-й день разработки будущая прививка уже проходила первое клиническое испытание.
Сегодня мРНК-вакцины применяются для борьбы со множеством болезней. Принцип работы вакцины такой: воссоздавая фрагменты мРНК вируса, она учит иммунные клетки человека создавать копии шиповидного белка (S-белок, или spike protein) патогена. С помощью S-белков патоген и проникает в клетки организма. Если носитель вакцины сталкивается с настоящей угрозой, срабатывает его иммунологическая память, и клетки быстро распознают опасность, не давая вирусу времени на размножение.
Так, в 2023 году группа ученых из Новой Зеландии и Австралии под руководством профессора Гэвина Пейнтера разработала вакцину на основе мРНК для защиты от малярии. А в 2024 году исследователи из биотехнологической компании Moderna (США) опубликовали результаты по новой мРНК-вакцине против цитомегаловируса. Препарат пока находится на финальном этапе клинических испытаний. Прививка показывает 50-процентную эффективность в многочисленных исследованиях. Руководитель проекта Салли Пермар предполагает, что дальнейшие исследования могут привести к регистрации вакцины в ближайшие годы.
Активно ведутся и разработки противораковых вакцин. Это касается, например, достаточно редкой и агрессивной формы онкологического заболевания — рака поджелудочной железы. Так, пятилетняя выживаемость при этом раке, согласно исследованиям американского Национального института онкологии (период с 2013 по 2019 год), составляет всего 12,5%.
Вакцина на платформе мРНК может предотвратить возвращение новообразований после операций. К таким выводам пришли авторы статьи, опубликованной в журнале Nature под руководством профессора Винода Балачандрана из Мемориального онкологического центра им. Слоуна-Кеттеринга в Нью-Йорке.