Как идея о других мирах стала плодотворной для жанра фантастики и для культуры

Наука и жизньНаука

Наука в фантастике: эпизоды истории

Антон Первушин.

Источник: artuk.org

Учёные XIX века всё ещё имели смутное представление о мироздании. Они обсуждали множество гипотез, которые сегодня кажутся нам причудливыми и очень далёкими от действительности. Неопределённость знания и несовершенство методов исследования породили спекулятивные обобщения, которые выглядели очень убедительными. В результате на стыке устаревшей мифологической космологии и гипотетических построений появилась идея о существовании миров вне пределов человеческого восприятия, за гранью чувственного опыта, которая оказалась очень плодотворной для жанра фантастики и культуры в целом.

Странники вне измерений

Жители сказочного мира. Иллюстрация из книги Томаса Кейтли «Мифология фейри» (The Fairy Mythology, Illustrative of the Romance and Superstition of various Countries.London: George Bell & Sons, York Street, Covent Garden. 1878).

Вера в присутствие рядом с нами незримых иных вселенных имеет почтенную историю: любое старинное предание, в котором упоминаются рай, обитель богов или волшебная страна, так или иначе обращается к ней. Ирландский фольклорист Томас Кейтли в фундаментальном труде «Мифология фейри» (Fairy mythology, 1828), посвящённом легендам народов, населяющих Великобританию (фейри — это сказочные персонажи, живущие рядом с людьми), сообщал по этому поводу: «У всех народов сочетание радости и боли, изысканного наслаждения и сильного страдания привело воображение к представлению о местах чистого блаженства, предназначенных для отдыха праведников после тяжких трудов жизни, где царит счастье и обитают существа, превосходящие людей. Воображение индуса рисовало небеса как „преисполненные блаженства”, а все чувственные радости собраны в мусульманском раю. Перс расточал богатства своей фантазии, возводя города из драгоценных камней и янтаря, которые украшают царство джиннов; романисты строили замки и дворцы, населённые рыцарями и дамами, на острове Авалон и в стране фей; эллинские сказители, не привыкшие к пышности и блеску, наполняли Элизий и Остров блаженных теплом и яркими цветами...»

В качестве примера мифотворчества такого рода можно привести кельтские легенды, посвящённые обитателям холмов («сидов») — потомкам прекрасного народа Туата Де Дананн (племена богини Дану, или дети Дану), прибывшего в Ирландию на «магическом облаке». Стремясь захватить больше территорий, они сражались с местными племенами и потерпели поражение от гойделов, сыновей Миля, предков современных людей. Чтобы избежать полного истребления, племена богини Дану применили волшебство, набросив на свою страну покров невидимости. С тех пор существуют две Ирландии: обычная и невидимая, в которую человек не может попасть по своей воле. Мир сидов описывается в сагах как невыразимо прекрасное место, где нет печали и скорби, болезней и старости. Время там течёт намного медленнее, земля плодородна, на ней произрастают невиданные музыкальные цветы и деревья. Сами обитатели сидов отличаются высоким ростом и изяществом. Раз в году, под Хэллоуин (31 октября, праздник Самайн), они меняют место жительства, и в этот период граница между мирами становится зыбкой, возникает зона туманов, через которую волшебные существа проникают к нам, а иногда уводят за собой людей.

Конечно, к началу XIX века, когда Кейтли начал записывать народные сказки для своего исследования, образованные люди понимали, что истории о прекрасных местах вне нашего мира — продукт вымысла невежественных предков. Однако в то же самое время появилось немало научных гипотез о том, что Вселенная устроена гораздо сложнее, чем принято считать.

Многомерный мир

Генри Мор (1614—1687), английский теолог, философ-платоник, поэт. Гравюра работы Уильяма Фейторна. 1675 год. Из коллекции Национальной портретной галереи, Лондон. Источник: npg.org.uk

Аргентинский писатель Хорхе Луис Борхес, увлекавшийся метафизикой, полагал, что корни идеи многомерности пространства следует искать в трудах забытого теолога XVII века — кембриджского платоника Генри Мора, который был убеждён, что бессмертные души и сам Бог имеют «пространственную протяжённость», поэтому могут быть измерены. «Бог является протяжённым, а также и ангелы и всякое самосущее, поскольку протяжение заключено в тех же границах, что и абсолютная сущность вещей... Утверждать, что Бог по-своему протяжён, заставляет меня то, что он вездесущ и тесно заполняет всю мировую машину в её частях». Отличие души от тела, согласно Мору, в том, что душа неделима и способна проницать другое и быть проницаемой, тело же делимо и непроницаемо. Поэтому вопрос о связи души и тела разрешается просто: душа находится в том же месте, что и тело, проницает его, двигает и сообщает жизнь, но при этом пребывает в особом нетелесном пространственном измерении, которое Мор в сочинении «Бессмертие души» (The Immortality of the Soul, 1659) назвал «четвёртой формой» (fourth Mode). В более позднем трактате «Руководство по метафизике» (Enchiridion metaphysicum, 1671) теолог заявил ещё конкретнее: «Материальные вещи, рассматриваемые сами по себе, имеют только три измерения; тем не менее в природе должно наличествовать четвёртое, которое, я думаю, вполне уместно назвать Сущностной Плотностью и которое... относится к духам».

Конечно, воззрения Мора вызвали резкую критику со стороны других мыслителей и в его эпоху не стали основой для более смелых рассуждений. Концепция четвёртого измерения пространства, которое недоступно органам чувств, обрела наполнение только благодаря выдающимся достижениям... математиков.

Николай Иванович Лобачевский (1792—1856), русский математик, один из первооткрывателей неевклидовой геометрии, деятель университетского образования и народного просвещения. Портрет кисти Льва Крюкова. До 1843 года. Из коллекции Национального музея Республики Татарстан, г. Казань. Источник: goskatalog.ru

До XIX века вся геометрия опиралась на принципы и постулаты, изложенные в сочинениях древнегреческого мыслителя Евклида. В 1824 году немецкий математик и астроном Карл Гаусс пришёл к выводу, что возможна и «неевклидова» геометрия, но не решился рассказать о своём умозаключении коллегам. Поэтому авторство её открытия принадлежит нашему соотечественнику — Николаю Ивановичу Лобачевскому, который в 1826 году разработал «воображаемую» геометрию. Пятый постулат Евклида в известной нам со школы формулировке гласит: «В плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной». Лобачевский предложил свой вариант: «На плоскости через точку, не лежащую на данной прямой, проходит более чем одна прямая, не пересекающая данную». Получалось, что в неевклидовой геометрии через точку может быть проведено бесконечное количество прямых, параллельных любой произвольной, а сумма углов треугольника в таком случае становится меньше 180°.

Несмотря на неприятие теории Лобачевского современниками, оказалось, что её вполне можно воплотить в реальных объектах: в 1868 году итальянский математик Эудженио Бельтрами построил модель «псевдосферы», на которой аксиома российского учёного строго соблюдается.

Неевклидова геометрия: слева представлена псевдосфера Бельтрами, иллюстрирующая геометрию Лобачевского, справа — сфера, иллюстрирующая геометрию Римана. Иллюстрация из книги: Henderson L. The Fourth Dimension and Non-Euclidean Geometry in Modern Art. Massachusetts Institute of Technology, 2013.

Веским доводом стало напоминание Бернхарда Римана, что при переходе от геометрических абстракций к реальным объектам постулаты Евклида нарушаются. Например, на сфере все линии пересекаются в её «полюсах», а сумма углов треугольника становится больше 180°. Взгляд Римана на геометрию предполагал возможность существования поверхностей или пространств, кривизна которых меняется. На такой неправильной поверхности фигуру невозможно перемещать без изменения её собственной формы и свойств. Хотя Евклид формально не постулировал недеформируемость фигур в движении, это предположение существенно для его системы. Если его отменить, получается геометрия, в которой фигуры будут изменяться в зависимости от свойств места, где они находятся.

Такого рода теории заложили основы для так называемой n-мерной геометрии, которая свободно оперировала пространствами, где фигурируют больше трёх привычных нам измерений (длины, ширины и высоты). Правда, вопрос, как визуализировать простые фигуры в «высших» измерениях, возникавший у математиков при обсуждениях, оставался открытым. Например, как будет выглядеть четырёхмерный куб? Известно, что куб можно представить в качестве бесконечного множества квадратов (срезов), расположенных параллельно друг другу. Следовательно, «срезами» четырёхмерного куба будут трёхмерные кубы? Проблему пытался решить американец Ирвинг Стрингхем, который в 1880 году защитил диссертацию «Правильные фигуры в n-мерном пространстве» (Regular Figures in n-dimensional Space). Его представление четырёхмерного куба стало классическим и в дальнейшем неоднократно использовалось сторонниками идеи существования «высших» измерений.

Геометрические фигуры в n-мерном пространстве в представлении Ирвинга Стрингхема; Fig. 4 изображает четырёхмерный куб (гиперкуб, тессеракт). 1880 год. Иллюстрация из книги: Henderson L. The Fourth Dimension and Non-Euclidean Geometry in Modern Art. Massachusetts Institute of Technology, 2013.

Популяризацией новых концепций, порождаемых n-мерной геометрией, с энтузиазмом занимался немецкий физик Герман фон Гельмгольц. В 1870 году он выступил с обширной лекцией «О происхождении и значении геометрических аксиом» (Über den Ursprung und die Bedeutung der geometrischen Axiome). Для иллюстрирования своих соображений по заявленной теме он использовал образ воображаемого мира двумерных разумных существ, живущих на поверхности сферы. Создавая систему геометрических постулатов, они не смогли бы ввести в неё параллельность, поскольку в их вселенной все линии раньше или позже пересекаются. Треугольники тоже имели бы сумму углов больше 180°, как у Римана. «И нет необходимости в дополнительных примерах, — говорил Гельмгольц, — чтобы показать, что геометрические аксиомы должны варьироваться в зависимости от типа пространства, населённого существами, чьи способности рассуждать сходны с нашими». При этом физик полагал, что человек априори не в состоянии вообразить мир «высших» измерений: «...они столь же мало скажут, какая дальнейшая пространственная конструкция будет порождена поверхностью, выходящей из самой себя, насколько мы могли бы представить, что породит твёрдое тело, выходящее из известного нам пространства... Поскольку сегодня не известно ни одного чувственного впечатления, относящегося к такому неслыханному событию, каким было бы для нас перемещение в четвёртое измерение... такое „представление” так же невозможно, как „представление” цветов для слепого с рождения».

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

«Художества и науки» в Петербургской Академии наук 1724—1803 «Художества и науки» в Петербургской Академии наук 1724—1803

О появлении современной науки: Великая дивергенция и благотворное влияние церкви

Знание – сила
Ловушки для шопоголиков Ловушки для шопоголиков

5 способов потерять деньги, покупая или продавая вещи в Интернете

Лиза
«Бочкарёвские дуры» в Зимнем «Бочкарёвские дуры» в Зимнем

Живучи домыслы о женском батальоне, который защищал Зимний дворец в 1917 году

Дилетант
Субурбан-мобиль Субурбан-мобиль

Шок! Внедорожника Haval H5 выросло на удивление много!

Автопилот
Гений вне морали, или Смертоносная красота. Как Оскар Уайльд и эстетизм проиграли современному миру Гений вне морали, или Смертоносная красота. Как Оскар Уайльд и эстетизм проиграли современному миру

За что викторианская эпоха выбрала Уайльда козлом отпущения

СНОБ
Зоологи допустили существование 30 тысяч видов и подвидов дождевых червей Зоологи допустили существование 30 тысяч видов и подвидов дождевых червей

Как ученые оценили разнообразие дождевых червей на планете

N+1
Элементы красоты Элементы красоты

Как улучшить состояние кожи при кожных заболеваниях – рекомендации нутрициолога

Лиза
Астрономы насчитали 55 убегающих звезд из сердца туманности Тарантул Астрономы насчитали 55 убегающих звезд из сердца туманности Тарантул

Астрономы провели перепись убегающих массивных звезд из скопления R136

N+1
3 этапа отношений, через которые проходит каждая пара 3 этапа отношений, через которые проходит каждая пара

Какие этапы проходят все влюбленные и что за опасности их подстерегают?

Psychologies
Прошу к барьеру! Прошу к барьеру!

Можно ли доверять презервативу полностью в деле защиты от инфекций?

Лиза
Такой разный стресс Такой разный стресс

Чем полезен и вреден стресс для организма?

Здоровье
Кирилл Гребенщиков Кирилл Гребенщиков

Кирилл Гребенщиков об особенностях игры в сериале «Наследники. Дар крови»

Лиза
Добытчица и домохозяин: как женщины рушат стереотип о том, кто должен содержать семью Добытчица и домохозяин: как женщины рушат стереотип о том, кто должен содержать семью

Provider woman: что это за тренд и как он влияет на традиционные устои общества?

Forbes
Расстройства сна: самые страшные болезни, связанные с недостатком качественного отдыха Расстройства сна: самые страшные болезни, связанные с недостатком качественного отдыха

Рассказываем о сонных недугах, пережить которые не пожелаешь даже врагу

ТехИнсайдер
Как Нобелевская премия по литературе становится проклятием для писателей Как Нобелевская премия по литературе становится проклятием для писателей

Нобелевская премия порой приносит с собой не только славу, но и крах карьеры

Psychologies
10 предметов, которые нельзя чистить средством для мытья стекол (хотя кажется, что можно) 10 предметов, которые нельзя чистить средством для мытья стекол (хотя кажется, что можно)

Каким предметам можно навредить жидкостью для мытья стекол?

VOICE
Есть научное объяснение тому, почему у пчел соты не круглые, а в виде шестиугольников Есть научное объяснение тому, почему у пчел соты не круглые, а в виде шестиугольников

Пчелы, не зная математики, строят свои соты в форме шестиугольника. Почему?

ТехИнсайдер
Несут какой-то вред Несут какой-то вред

Чем сложнее подход к тренингу, тем больше неверных шагов можно сделать

Men Today
Стоп! Снято Стоп! Снято

История поиска жилья в столице от того самого худшего арендатора

Men Today
Узнайте истоки антисемитизма! Вот почему до сих пор есть антисемиты: интересные факты Узнайте истоки антисемитизма! Вот почему до сих пор есть антисемиты: интересные факты

Почему в обществе так развита ненависть к евреям?

ТехИнсайдер
Экономическое поле экспериментов Экономическое поле экспериментов

Как полевые испытания на людях помогают экономическому развитию

N+1
Ярославль: А что вокруг? Ярославль: А что вокруг?

Интересные городки-спутники Ярославля

КАНТРИ Русская азбука
«Другой человек»: трагикомедия о том, как мужчины тоже переживают о своей внешности «Другой человек»: трагикомедия о том, как мужчины тоже переживают о своей внешности

«Другой человек»: мрачная трагикомедия о кризисе идентичности

Forbes
Мочевина для дизеля: что это такое и для чего нужна Мочевина для дизеля: что это такое и для чего нужна

Специальная жидкость с малоаппетитным названием раствор мочевины. Для чего она?

РБК
Актриса Ирина Темичева: «Самая большая глупость, что я слышала, это то, что все мужчины изменяют» Актриса Ирина Темичева: «Самая большая глупость, что я слышала, это то, что все мужчины изменяют»

Актриса Ирина Темичева раскрывает секрет долгих и счастливых отношений

Maxim
Филиппо Минелли: Не позволяю мнению людей влиять на то, что делаю Филиппо Минелли: Не позволяю мнению людей влиять на то, что делаю

Звезда международной арт-сцены Филиппо Минелли — о самых сложных проектах

СНОБ
Истина где-то здесь Истина где-то здесь

Вокруг этих мест ходит много таинственных слухов и даже леденящих душу рассказов

Лиза
Маша Трауб: Успех рождается из неравнодушия, а не из попытки угадать спрос Маша Трауб: Успех рождается из неравнодушия, а не из попытки угадать спрос

Маша Трауб — о том, как написать сказку, где танцуют макароны и котлеты

СНОБ
Афалины улыбнулись друг другу во время игры Афалины улыбнулись друг другу во время игры

Дельфины демонстрировали открытый рот и копировали мимику сородичей

N+1
ЗОЖ: «лазоревые» регионы долголетия ЗОЖ: «лазоревые» регионы долголетия

Продолжительность жизни можно увеличить, изменив пищевые привычки

Агроинвестор
Открыть в приложении