Как устроены нейросети, каковы их возможности, риски и перспективы?

РБКHi-Tech

Илья Макаров: «Люди не готовы к ошибкам нейросетей»

Еще в прошлом году редко кто что-то слышал о нейросетях, а уже в этом нейросеть может стать главным словом года во всем мире. Что это за технология, как устроены нейросети, каковы их возможности, риски и перспективы? Ответы на эти вопросы дал «РБК Трендам» эксперт Илья Макаров

Беседовала Анна Арбузова

Илья Макаров, руководитель группы «ИИ в промышленности» Института AIRI, директор Центра искусственного интеллекта МИСИС

Отделить кошек от собак

РБК: Давайте сразу проясним: что такое нейросеть и как она устроена?

И. М.: Чисто технически — это набор математических конструкций, которые отвечают за обработку разного типа данных. Другими словами, это математическая модель, которая обрабатывает входные данные и выдает некий результат на выходе.

Для каждой модели нейронной сети есть математическое описание, которое задает, как эта нейросеть выглядит, какие у нее есть обучаемые параметры. Например, предиктивная модель нейросети. Допустим, на одной картинке изображены коты, на другой — собаки. На выходе у вас есть класс — кот или собака. Что делает нейронная сеть? Она преобразует исходный сигнал к выходу, который интерпретируется как некоторая вероятность. Вероятность класса у одного будет 0,8, а у другого — 0,2. Тогда итоговое решение будет приниматься как наиболее вероятный класс. Это и будет предсказанием нейросети.

РБК: Искусственный интеллект, сложный алгоритм, машинное обучение. К каким из этих понятий можно отнести нейросеть?

И. М.: Нейросеть относится ко всему вместе. Ее можно назвать стохастическим алгоритмом, потому что у нее есть параметры, которые подбираются алгоритмом обучения. Нейросеть точно относится к машинному обучению, потому что нам нужно ее обучить, чтобы она работала. К искусственному интеллекту ее можно отнести из-за возможности реплицировать какие-то задачи, которые делает человек, и качество работы нейросетей будет не хуже.

РБК: Какие модели нейронных сетей существуют и какие задачи они решают?

И. М.: Сейчас очень много разных моделей. В зависимости от типа данных применяются разные технологии. Например, рекуррентные нейронные сети пытаются запомнить информацию из предыдущей части последовательности и использовать ее при обработке следующего участка последовательности. Графовые нейросети агрегируют информацию из вершины графа и от всех ее соседей в графовых структурах. Сверточная архитектура с помощью фильтров раскладывает картинку на простые паттерны, которые можно интерпретировать для задач классификации. Для генерации картинок используется диффузионная модель нейросети. Она сначала делает из картинки «белый шум», а потом пытается ее восстановить и генерирует новое изображение.

РБК: Не прошло и года, как мир заговорил о феномене нейросетей: в июле 2022-го началось открытое тестирование генератора изображений Midjourney, в ноябре был запущен чат-бот ChatGPT от компании OpenAI. А что способствовало прорыву в развитии нейросетей?

И. М.: На самом деле нейросети были популярны еще в XX веке. Но для их массового развития не хватало возможностей оборудования. Прорыв произошел в 2012 году, когда на международном соревновании ImageNet нейросеть смогла классифицировать изображения не хуже человека. Тогда стало понятно, что нейронная сеть — очень простая конструкция, которая может работать.

Начиная с 2014–2015 годов стали появляться первые работы на генеративном ИИ, которые реально заслуживают внимания. Это прогресс, потому что такая технология позволяет генерировать много данных. Данные, с одной стороны, могут улучшать результаты предиктивного ИИ, а с другой — создавать контент.

На мой взгляд, прогресс современных генеративных моделей искусственного интеллекта произошел за счет развития диффузионных моделей. Однако, чтобы нейросети корректно изображали, например лица и руки, нужно, во-первых, большое количество данных для обучения, во-вторых, внимание к деталям со стороны разработчиков.

Людей и природу нейронные сети уже хорошо научились генерировать. Но всегда есть над чем работать. Этим как раз и занимаются ученые. Они придумывают все больше моделей, которые повышают визуальное качество изображения и позволяют менять семантические параметры. Например, цвет глаз, наличие веснушек на лице, цвет волос, прическу. Если это можно сделать, условно, передвижением ползунка, то такие архитектуры представляют наибольшую ценность для продуктовых решений. Это позволяет перейти к нейроредакторам, в которых можно изменять разные параметры, стабильно и качественно генерируя контент.

Запрос на сверхразум

РБК: Что значит для науки прогресс нейросетей?

И. М.: Технологии, над которыми работают ученые, наконец дошли до масс. Причем скорость дохождения оказалась гораздо выше, чем все, что было до этого. Мы живем в эпоху потребления, в том числе цифрового контента. Блогеры мне рассказывают, что они просят ChatGPT сгенерировать сценарий ролика, другую нейросеть — сгенерировать видео со своей говорящей головой по этому сценарию, третью — озвучить видео, четвертую — добавить фон. То есть, комбинируя большое количество генеративных моделей, они создают контент и управляют им. Это стоит копейки по сравнению с созданием такого контента людьми.

Мы переходим к тому, что базовые технологии — машинная генерация речи, видео, текста — теперь доступны не только ученым, но и обществу.

РБК: Какие задачи помогают решать нейросети в разных сферах науки?

И. М.: Распознавание старинных рукописных текстов, автоматический перевод, восстановление старых фотографий и источников, определение авторства картин. В социологических исследованиях ИИ позволяет реально оценить настроения людей. В психологии искусственный интеллект профилирует личности и выстраивает определенный паттерн поведения. Существуют чат-боты, которые помогают справляться с депрессией. Философы стали исследовать языковые модели в попытках найти сверхразум, Бога или отражение своих философских взглядов. Применений очень много, важно понимать, как это работает.

РБК: Кому принадлежат права на произведение, которое сгенерировала нейросеть?

И. М.: Сейчас в США приняли первое решение о том, что если вы несколько раз делали промпт-инжиниринг (проще говоря, формулировали запросы боту и подсказки) или несколько раз как-то обрабатывали результат нейросети, то вы можете заявить на результат свои права. Это попытка баланса между тем, что хочет общество, и тем, что хочет регулятор.

Регулятор хочет сказать, что все, что сгенерировано ИИ, не облагается авторским правом. Это, на мой взгляд, неправильно. Нейросети — это способ быстрее получить результаты. Вообще никакой регулятор без команды ученых не может определить, было произведение сгенерировано нейросетью или создано вручную. Одно из решений — внедрение невидимых водяных знаков или зависимостей между пикселями, которые могут сигнализировать о том, что произведение сгенерировала нейросеть.

Позиция любого пользователя — произведение появилось только благодаря введенному им запросу. Разработчики же хотят получать процент за использование их технологии пользователями. Поэтому вотермарки — баланс между желаниями всех сторон.

РБК: А что, кроме споров об авторских правах, может дать работу юристам?

И. М.: Например, данные, на которых обучается нейросеть. В выборку может попасть ваше фото из интернета. Представим, что нейросеть научилась генерировать изображения, похожие на вас. По европейским и американским законам можно запретить использование своего лица на любой фотографии. Однако сложно исключить фотографии из обучающей выборки и переобучить нейросеть с нуля.

Я не против, чтобы мое лицо использовали для обучения и генерации изображений. А если меня вставят в потенциально неприличный дипфейк, то я не буду рад этому, но и защититься никак не смогу.

В Китае ставят во главу угла разработку продукта, и все, что ведет к ее ускорению, разрешено. Если в России ввести положение, что на каждую фотографию нужно получить письменное разрешение да ждать его по почте, то вся разработка встанет. Если в соседних странах развитие будет идти бешеными темпами, а у нас нет, то это плохо отразится на отрасли. На мой взгляд, нужно сейчас дать возможность сформироваться рынку, сформировать продукты на основе генеративного ИИ. Потом уже что-то запрещать. Если будут какие-то спорные моменты, то решать их в пользу людей.

Квантовый компьютер IBM Q System One

Без права на ошибку

РБК: Какие риски сопровождают развитие нейросетей и ИИ?

И. М.: Во-первых, появляются этические проблемы. Возьмем, к примеру, делопроизводство. В США провели эксперимент — попросили ИИ предсказать по текстовому описанию виновника происшествия. В результате больше всего правонарушений он «зафиксировал» у афроамериканцев. Дело в том, что алгоритм выучил распределение, которому его обучили. Оказалось, что в выборке изначально была заложена дискриминация по цвету кожи на основе статистических данных.

Если данные, которые подаются ИИ, неправильные как с точки зрения чистоты информации, так и с точки зрения этической составляющей, то нужно в алгоритм закладывать такие функции, чтобы он не мог использовать, например, сведения о расе, поле, цвете кожи, если эти данные не имеют отношения к принятию решений. Но, к сожалению, ИИ может предсказать эти параметры. Поэтому нужно подготавливать данные так, чтоб он не мог выучить эти зависимости.

Во-вторых, если говорить о ChatGPT, то в него заложена система исправления ошибок взаимодействия с юзером, чтобы оставлять у пользователя наиболее приятное впечатление от общения. Можно, например, доказать, что дважды два равно пяти.

По запросу, сколько будет дважды два, нейросеть сначала выдаст правильный ответ. Но если сказать, что, например, моя жена считает, что дважды два равно пять, то нейросеть через некоторое время сдастся и ответит, что ее обучающая выборка покрывает информацию в интернете до 2021 года, этот факт может быть в нее не включен, и в итоге согласится, что дважды два равно пяти.

Текущий генеративный ИИ пытается дать ответ, которым пользователь останется доволен. Но это не означает, что он генерирует абсолютно правдоподобные вещи. И это действительно современная проблема.

И, в-третьих, люди не готовы принимать ошибки ИИ. Каждый день происходят сотни аварий, но если пешехода сбивает беспилотник, так его тут же пытаются запретить.

РБК: Как распознать контент, который генерирует нейросеть?

И. М.: Это открытый вопрос. В целом — никак. Ученые занимаются разработкой методов определения fake news. Многие исследования потом интегрируются в реальные продукты. В компаниях в тестовом режиме внедряются автоматические средства, которые помогают определять фейковые новости. Если этой же информации нет на иностранных языках или в наиболее цитируемых СМИ, то, возможно, это фейк.

Мой совет исключительно как человека — читайте меньше новостей, соблюдайте правила цифровой гигиены, тратьте больше времени на самообразование.

Незаменимых нет

РБК: Как нейросети, ИИ повлияют на рынок труда?

И. М.: Еще несколько лет назад все говорили, что повлияют, но не сильно. Например, под угрозой окажется профессия водителя. Если вас может отвезти автономный трамвай или автобус, то пассажиры не будут возражать при условии, что это безопасная технология.

Сейчас же с развитием нейросетей и ChatGPT под угрозой оказывается гораздо большее количество профессий. Из-за этого могут снизиться зарплаты или вырасти безработица. Например, в консалтинге людей, которых несколько лет учили делать красивые презентации, сейчас могут заменить нейросетью ChatBA. Этот сервис сделает презентацию на уровне обученного специалиста.

Наиболее крупные компании будут внедрять искусственный интеллект, чтобы ускорять бизнес-процессы и сокращать операционные расходы. Многие задачи ИИ может сделать не хуже, чем человек, в том числе творческие. Один из проектов, в котором я участвовал, развивал генеративный ИИ в сторону моды. Представим, что вы можете нанять человека с неплохой фигурой, а лицо и прическу приделать нейросетью. Нейросеть генерирует очень красивых людей, которых мы редко встретим в реальной жизни. И цена самой съемки вместо сотен тысяч рублей будет измеряться лишь стоимостью вычислений в облаке и услуг разработчика.

РБК: Может ли нейросеть заменить людей в профессиях, где от компетенции исполнителя зависит жизнь человека?

И. М.: Нейросеть может заменить, но человек не готов принять решения и ошибки, которые существенно значимы для наших с вами жизней. Если пациент заболел, то определить, ОРВИ это или бактериальная инфекция, можно только по анализу крови. Большинство из нас его не сдают. В этом плане любая нейросеть может имитировать врача и более-менее отвечать так же, как он, — на основе данных анализа. Однако ошибки врача мы принять можем, а нейросети — нет. Для постановки тяжелых диагнозов, например онкологии, решение должен все-таки принимать человек. При этом нейросеть может помочь ускорить процесс выявления болезни и выстроить лечение, которое продлит тяжелобольному пациенту жизнь.

РБК: Сможет ли нейросеть заменить и ученых?

И. М.: Как ученый, я могу сказать, что да. Но на ближайшие лет 10–20 я об этом не беспокоюсь. Во многих задачах автоматические решения не работают. Экспертизу и интуицию, которая нарабатывается у ученого, очень сложно заменить.

РБК: Что нужно делать, чтобы не остаться без работы?

И. М.: Нужно уметь пользоваться новыми инструментами и продолжать учиться.

Пределы совершенству

РБК: Как дальше будут развиваться нейросети и есть ли этому предел?

И. М.: Первый предел — возможности оборудования. С точки зрения размера чипов мы уже подходим к определенному пределу, который можно преодолеть на основе либо чипов на фотонике, либо квантовых компьютеров. Здесь есть большие ограничения. Квантовый компьютер помогает в развитии генеративного ИИ, но почти бесполезен для предиктивного ИИ.

Второй предел — трудности с созданием ИИ, который учится сам по себе, извлекает какую-то полезную информацию, оптимизируя какие-то промежуточные задачи. Модели, которые решают такие задачи, уже есть, но работают пока недостаточно хорошо. И получится ли добиться здесь прогресса или нет — непонятно. Они все еще уступают моделям, которые обучаются на данных, размеченных вручную.

Третий предел — финансовый. Сейчас только гиганты, как OpenAI, могут позволить себе дорогостоящую инфраструктуру и работать над самообучающимися моделями ИИ. Поэтому дальнейшее развитие нейросетей и их продуктовая реализация будут зависеть от поддержки ученых.

Четвертый предел определяется тем, что прогресс робототехники гораздо ниже, чем ИИ. Рано или поздно инженеры и робототехники решат проблему точности движений робота и придумают небольшой, но емкий аккумулятор, который поместится в робота и позволит ему долго работать. Тогда появится возможность внедрять ИИ в роботов-помощников, которые описываются в художественной культуре.

Пятый предел — восприятие нейросетей человеком. Важно, чтобы человечество продвинулось в понимании, что искусственный интеллект — это наш помощник и им нужно уметь правильно пользоваться.

Фото: Михаил Гребенщиков для РБК; IBM

Хочешь стать одним из более 100 000 пользователей, кто регулярно использует kiozk для получения новых знаний?
Не упусти главного с нашим telegram-каналом: https://kiozk.ru/s/voyrl

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Умное стекло на гибкой подложке Умное стекло на гибкой подложке

Российские инженеры создали пленку, которая регулирует прозрачность за секунды

Эксперт
Буллинг на работе Буллинг на работе

Что делать, если ты столкнулась с травлей в коллективе

Лиза
Ольга Еремина: « Людям хочется что-то делать, создавать новое, свое» Ольга Еремина: « Людям хочется что-то делать, создавать новое, свое»

Кто сегодня открывает малый и средний бизнес?

РБК
Тайна острова Фланнан: что случилось с тремя смотрителями маяка 123 года назад? Тайна острова Фланнан: что случилось с тремя смотрителями маяка 123 года назад?

Трое мужчин вышли темной ночью в 1900 году, и их больше никогда не видели

ТехИнсайдер
Александр Чулок: «Ведь не граблями и вилами строить новую экономику» Александр Чулок: «Ведь не граблями и вилами строить новую экономику»

Заглядываем в будущее вместе с экономистом и прогнозистом Александром Чулоком

РБК
Морские огурцы могут разорвать собственную задницу и обвить врага комком липких внутренностей Морские огурцы могут разорвать собственную задницу и обвить врага комком липких внутренностей

Морские огурцы только кажутся легкой мишенью для голодных хищников

ТехИнсайдер
ТОП-5 многолетников ТОП-5 многолетников

С этими красивыми и неприхотливыми цветами сразу заиграет любой участок

Лиза
5 типов токсичных родителей: как исправить отношения — психологический разбор 5 типов токсичных родителей: как исправить отношения — психологический разбор

Пять типов токсичных матерей и отцов и способы пересмотреть отношения с ними

Psychologies
Как искусственный интеллект помогает в научных исследованиях Как искусственный интеллект помогает в научных исследованиях

Впечатляющие сферы применения ИИ исследователями

РБК
На американских горках: 10 самых разбогатевших за год российских миллиардеров На американских горках: 10 самых разбогатевших за год российских миллиардеров

10 самых удачливых миллиардеров увеличили свое состояние на $77,4 млрд

Forbes
Не то же, но похоже Не то же, но похоже

Чем опасны бьюти-подделки и как отличить оригинальную косметику от реплик?

VOICE
Пальчики оближешь! 5 оригинальных и очень вкусных маринадов для шашлыка Пальчики оближешь! 5 оригинальных и очень вкусных маринадов для шашлыка

Мы собрали подборку лучших маринадов для шашлыка — выбирайте любой!

ТехИнсайдер
«Дело микробиологов» «Дело микробиологов»

За что арестовали ученых-микробиологов?

Дилетант
Это сформировало XXI век! Интересные факты о кинофраншизе «Матрица» Это сформировало XXI век! Интересные факты о кинофраншизе «Матрица»

«Матрица» все еще продолжает оказывать влияние на всех киноделов планеты

ТехИнсайдер
Обмани себя Обмани себя

Как обмануть организм, чтобы снять стресс и улучшить состояние здоровья?

Grazia
Кнут и пряник: 3 распространенных способа удержать партнера — выводы ученых Кнут и пряник: 3 распространенных способа удержать партнера — выводы ученых

Три стратегии, которыми мы пользуемся, чтобы сохранить отношения

Psychologies
Как на самом деле женщины и мужчины относятся к браку: ожидания, страхи и приоритеты — объяснение психологов Как на самом деле женщины и мужчины относятся к браку: ожидания, страхи и приоритеты — объяснение психологов

Почему даже счастливые браки рушатся из-за досадного недопонимания?

Psychologies
Цена вопроса: что происходит с премиальными модными брендами в России Цена вопроса: что происходит с премиальными модными брендами в России

Что такое товары категории премиум и насколько они востребованы на рынке сейчас

Forbes
Relativity Space отказалась от легкой 3D-печатной ракеты Terran 1 Relativity Space отказалась от легкой 3D-печатной ракеты Terran 1

Космическая компания Relativity Space решила полностью отказаться от Terran 1

N+1
Выйти из тени Выйти из тени

Когда любимое хобби приносит деньги: как избежать проблем с законом

Лиза
«Больше» всегда «лучше»: это предубеждение встроено прямо в язык «Больше» всегда «лучше»: это предубеждение встроено прямо в язык

Наш язык плотно связывает "увеличение" с "улучшением"

ТехИнсайдер
Зоя Богуславская: «Портреты эпохи: Андрей Вознесенский, Владимир Высоцкий, Юрий Любимов...» Зоя Богуславская: «Портреты эпохи: Андрей Вознесенский, Владимир Высоцкий, Юрий Любимов...»

Фрагмент главы из книги «Портреты эпохи» Зои Богуславской

СНОБ
Прожил с женой 40 лет и ушел к 20-летней: личные драмы Станислава Любшина Прожил с женой 40 лет и ушел к 20-летней: личные драмы Станислава Любшина

Как складывалась личная жизнь Станислава Любшина и как он нашел свое счастье

VOICE
Бизнес как часть организма Бизнес как часть организма

Компания «СМ-клиника» наращивает свое присутствие на рынке частной медицины

Эксперт
Терпение, мудрость и прагматизм: 7 слов, помогающих жить в неопределенности, — обретите устойчивость Терпение, мудрость и прагматизм: 7 слов, помогающих жить в неопределенности, — обретите устойчивость

Как существовать в эти смутные времена полноценно, не теряя ни дня своей жизни?

Psychologies
Вдова бургомистра и комиссар поневоле: первые женщины, управлявшие городами Вдова бургомистра и комиссар поневоле: первые женщины, управлявшие городами

Они доказали, что женщины могут справиться и с управлением целым городом

Forbes
Пчелы потеряли дофамин и мотивацию после стоп-сигнала Пчелы потеряли дофамин и мотивацию после стоп-сигнала

Когда на пчелу при кормления нападают, она летит в гнездо предупредить остальных

N+1
Валерия: «Старость – это когда тянет к земле. А я стремлюсь вверх!» Валерия: «Старость – это когда тянет к земле. А я стремлюсь вверх!»

Невероятно, но факт: 17 апреля Валерия отметит 55-летие

Лиза
Кто не спит, тот не живет: как недостаток сна портит нам жизнь Кто не спит, тот не живет: как недостаток сна портит нам жизнь

Глава из книги «Спать и высыпаться» о том, как недостаток сна влияет на жизнь

Inc.
Месть бывшего любовника жены! Мужчина умер из-за бомбы в подаренной стереосистеме Месть бывшего любовника жены! Мужчина умер из-за бомбы в подаренной стереосистеме

Преступник из ревности заложил взрывчатку в свадебный подарок

ТехИнсайдер
Открыть в приложении