Не доказано — не факт!
Плох тот учёный, который не учится на ошибках предшественников. История науки знает множество примеров заблуждений математиков — по неведению, из-за поспешных выводов, неверных рассуждений... Математика тем и хороша, что в ней ничто не принимается на веру и даже ошибки бывают поучительными, они пробуждают работу мысли и могут привести к важным открытиям.
Перебирая варианты
В поэме «Божественная комедия» Данте Алигьери, итальянского поэта и мыслителя позднего Средневековья, есть строки, посвящённые азартным развлечениям:
Когда кончается игра в три кости,
То проигравший снова их берёт
И мечет их один, в унылой злости...
Описывая типичную для той эпохи сцену, автор и не догадывался, что в будущем игрой в кости всерьёз заинтересуются математики.
Мимо этого эпизода не прошёл один из первых комментаторов «Божественной комедии» итальянский историк XIV века Бенвенуто да Имола. Он подсчитал количество исходов при одновременном бросании трёх игральных костей и пришёл к выводу: всего возможно 56 комбинаций троек чисел, выпадающих на верхних гранях. Имола не первый, кто решал эту комбинаторную задачу. Аналогичные подсчёты проделал ещё в X веке французский епископ города Камбре Вибольд. Желая отучить монахов от азартных игр и вернуть на путь истинный, он придумал для них игру в кости, где каждая выпавшая тройка очков обозначала какую-нибудь христианскую добродетель. Победителю полагалось внушать эти добродетели остальным монахам. Перебирая варианты, Вибольд также насчитал 56 исходов броска. Тот же результат выдал в 1523 году итальянский математиксамоучка Никколо Тарталья, который обобщил задачу и для случая произвольного числа игральных костей.
Заблуждались все трое. Их решения оказались неполными, поскольку при переборе вариантов учитывалось сочетание выпавших очков и не брался в расчёт их порядок. Поэтому, например, каждая тройка различных чисел считалась за одну комбинацию, а не за шесть разных, всего же их набралось 20 вместо 120. Отличие станет очевидным, если перебирать числа, расположив три кости сначала в ряд, а затем по кругу.
Первым из математиков о роли перестановок догадался итальянец Джероламо Кардано, научный конкурент Тартальи и к тому же заядлый игрок. Он насчитал 6 + 30 * 3 + 20 * 6 = 216 исходов броска трёх костей. А самое простое решение задачи предложил позже великий астроном и механик Галилео Галилей: при броске одной игральной кости может выпасть любая из шести граней, тогда, сочетая грани трёх костей друг с другом всеми способами, получим 63 = 216 исходов. По сути, учёный применил комбинаторное правило умножения, незнакомое европейцам в Средние века.
Недооценка перестановок также не раз приводила к ошибкам в решении вероятностных задач. Самый известный пример относится к середине XVIII века — это неверно вычисленная французским математиком Жаном Д’Аламбером вероятность выпадения хотя бы одного «орла» при подбрасывании трёх монет. Вместо восьми равновозможных исходов броска он насчитал всего четыре, очевидно, прибегнув по традиции к перебору вариантов, а не к комбинаторике.
Правдоподобно или верно?
С давних пор математики стремились найти «формулу простых чисел», дающую если не все, то хотя бы бесконечно много простых чисел. Ещё в середине XVII столетия знаменитый французский математик Пьер Ферма утверждал, что все числа Fn = 2m + 1, где m = 2n и n = 0, 1, 2, … , позже названные его именем, являются простыми, в подтверждение чему сгенерировал таким образом первые пять чисел: 3, 5, 17, 257, 65 537. Все они в самом деле простые. Дальше проверять свою догадку Ферма не стал, ибо в собственной правоте ничуть не сомневался, о чём сообщил в письме Блезу Паскалю. Показатель m был выбран не случайно: число 2m + 1 при m ≠ 2n является составным, и только при m = 2n оно могло оказаться простым. Результаты проверки первых пяти чисел добавили Ферма уверенности. Предположение математика выглядело вполне правдоподобно, но всё же оказалось неверным. И неудивительно: оно было сделано на основе наблюдения, сравнения и обобщения всего пяти частных случаев, или, как говорят логики, с помощью неполной индукции, а она иногда приводит к ошибкам, в данном случае к поспешному обобщению.
Через три четверти века эту ошибку разглядел выдающийся швейцарский и российский математик Леонард Эйлер. Он сумел разложить на множители уже следующее число Ферма, десятизначное. Решение подобной задачи в то время было сродни подвигу даже для такого мастера расчётов, как Эйлер. И что же он сделал? Первым делом упростил себе работу: определил, какого вида простые числа могут претендовать на роль делителей, и проверял только их. Эйлеру повезло — хватило десяти проверок. Согласно его расчётам, сделанным вручную, F