Водород давно и широко используется в химической и пищевой промышленности

Наука и жизньНаука

Где взять водород?

Кирилл Дегтярёв, Московский государственный университет им. М. В. Ломоносова

Электролизная станция с ресиверами хранения водорода. Березовская ГРЭС. Красноярский край (2014 год). Фото Валерия Акулича/Фотобанк Лори

Водород давно и довольно широко используется в химической и пищевой промышленности, в нефтепереработке. Но как об энергоресурсе о водороде заговорили сравнительно недавно. Первые экспериментальные проекты использования этого газа в качестве топлива для транспорта появились в начале текущего века. На протяжении двух десятилетий «водородный тренд» постепенно набирал силу. В широкое употребление вошло понятие «водородная экономика». Планы её развития, заявленные в ряде стран, включая Россию, подразумевают многократное увеличение производства и потребления водорода в энергетических целях — в качестве топлива, для производства электрической и тепловой энергии.

Предполагается, что водород наряду с возобновляемыми источниками энергии вытеснит «традиционные» углеводородные энергоносители. Водород активно позиционируют в качестве экологически безопасного «углеродно-нейтрального» источника энергии, а планируемый рост его производства и использования — как движение по пути декарбонизации мировой экономики и снижения потребления ресурсов. Под декарбонизацией понимается прекращение выбросов углерода и его соединений, прежде всего углекислого газа CO2, антропогенную эмиссию которого рассматривают в качестве одной из ключевых причин глобального потепления. Но с возможностью перевода энергетики на водород не так всё просто.

Лёгкий, горючий и очень теплотворный

Наверное, каждому из школьного курса химии известно, что водород — первый химический элемент таблицы Менделеева. Есть ряд изотопов водорода, но основной из них — протий (1H), на который приходится примерно 99,99% атомов водорода на Земле и во Вселенной. Ядро протия состоит всего из одного протона. Как следствие, это самый лёгкий химический элемент. Для сравнения, при нормальном атмосферном давлении 1 м3 воздуха имеет массу около 1,2 кг, 1 мприродного газа (метана CH4) — 700 г, а 1 м3 газообразного водорода (химическая формула H2) — всего 90 г. То есть водород почти в 8 раз легче природного газа и в 13 раз легче воздуха.

Водород бесцветен, не имеет запаха, при этом он химически активен, горюч и взрывоопасен. Но его горение действительно не даёт выбросов загрязнителей атмосферы. Реакция горения водорода идёт с образованием воды, с выделением большого количества энергии E (тепла): 2 H2 + O2 => 2H2O + E. То есть это тепло — экологически чистая энергия.

Водород — самый распространённый элемент во Вселенной, на него приходится почти 89% общего числа её атомов и около 75% её массы, поскольку этот газ — основное вещество звёзд и топливо для их «работы». Отметим, что остальные 11% атомов Вселенной приходятся на гелий — собственно, продукт «горения» звёзд, и только 0,1% — на все остальные химические элементы

Однако в обитаемом и доступном нам мире водорода на порядки меньше. Например, в земной коре его содержание оценивается всего в 1% по массе и около 17% — по общему количеству атомов. В земной атмосфере водород также выглядит исчезающе малой величиной — 5∙10─5% (0,00005%) общего объёма атмосферы и 3,5∙10─6% (0,0000035%) её массы. При этом свободного водорода на Земле мы почти не видим. Слишком лёгкий элемент в атмосфере плохо удерживается земным притяжением, но охотно вступает в химические реакции, образуя разные соединения, в которых он в основном и присутствует в географической оболочке.

Самое распространённое соединение водорода — вода, а самый большой на Земле резервуар этого газа — Мировой океан, на который приходится 96% воды на планете. Объём и масса вод Мирового океана — огромные величины: более 1,3 млрд км3 и, соответственно, 1,3∙1018 т. На водород в массе воды приходится 11%, то есть, в океанической воде его содержится примерно 1,4∙1017 т, и ещё приблизительно 5,6∙1015 т — в остальных водах Земли. Это в совокупности очень немного относительно массы земной коры, составляющей 2,8∙1019 т, — примерно полпроцента.

Оценим это количество водорода в энергетических единицах, сопоставляя с потребностями человечества. Теплотворная способность данного газа — 3,6 кВт∙ч/м3, или 40 кВт∙ч/кг и 40 МВт∙ч/т. Это примерно в три раза выше, чем у природного газа. Иными словами, только в пресных водах Земли (это всего 4% от всей земной воды) содержится 2,24∙1017 МВт∙ч, или 2,24∙1011 ТВт∙ч потенциальной водородной энергии. Для сравнения, вся энергия, потребляемая человечеством в течение года, менее 2∙105 ТВт∙ч1 — в миллион раз меньше. И нужно «всего» 5 млрд тонн водорода в год, чтобы обеспечить энергией всё человечество на текущем уровне. При этом в пресной воде Земли его больше в 1 млн раз, а в океанической — в 25 млн раз.

1 По данным International Energy Agency.

Огромное по сравнению с нуждами мирового энергопотребления количество водорода в виде его соединений содержится в запасах угля, нефти и газа, собственно, и называемых углеводородным сырьём. Дать точную цифру мировых ресурсов ископаемых углеводородов невозможно, но на данный момент только разведанные запасы в совокупности превышают 1 трлн тонн, и водорода в них не менее 100 млрд тонн, при этом на Земле разведано далеко не всё и ресурсная база постоянно пополняется.

Иными словами, теоретически, если мы начнём использовать водород в качестве топлива для выработки тепловой и электрической энергии, извлекая его только из воды, нам хватит его как энергоносителя на десятки миллионов лет, то есть навсегда.

Желанный, но такой дорогой

Почему же до сих пор водород не стал энергоносителем номер один?

Два главных способа получения этого газа в настоящее время — конверсия углеводородного сырья и электролиз воды. Но извлечение водорода из его соединений означает разрыв химических связей между водородом и кислородом в случае воды или между углеродом, кислородом и водородом в случае углеводородов. И оба процесса сопряжены с очень большими затратами энергии, с дорогостоящим оборудованием и, заметим, с загрязнением окружающей среды.

В настоящее время в мире производится около 75 млн т водорода в год, и пока его производство растёт невысокими темпами — менее 2% в год. При этом из углеводородного сырья добывается более 90% всего производимого водорода, в том числе 70% — с помощью конверсии природного газа, самого доступного способа. В основе процесса — подвод к природному газу тепла (нагрев печи до 600—1000°С) и водяного пара в присутствии металлического катализатора — кобальта, никеля, железа. Это самый дешёвый, но экологически грязный способ, оставляющий большой углеродный след, то есть выбросы CO2 в атмосферу. Он описывается химическими реакциями:

CH4 + H2O = CO + 3H2

СО + H2O = CO2 + H2

На выходе, как можно видеть, — большое количество углекислого газа. Кроме того, при расчёте стоимости процесса надо учитывать не только затраты собственно на работу печи, но и на добычу и транспортировку газа. И если рассматривать водород как топливо, то дешевле и экологически чище просто добывать и сжигать природный газ.

Есть и другие способы углеводородной конверсии — например, газификация и пиролиз угля и даже получение водорода из биомассы, но углеродный след и высокие затраты присущи всем этим решениям.

Если слегка коснуться цифр, то стоимость производства водорода методами углеводородной конверсии оценивается от $2 за 1 кг. Один лишь расход метана на производство 1 кг водорода составляет 5 м3, а при угольной конверсии производство 1 кг водорода потребует более 6 кг угля. Цена, очевидно, высока, при этом использование водорода как энергоносителя с КПД, равным 100%, невозможно, и количество полученной энергии в данном случае надо делить примерно на два—три. Добавим ещё затраты на создание и поддержание инфраструктуры для транспортировки и хранения водорода и получим исключительно дорогое топливо, производство которого далеко не безупречно с экологической точки зрения.

Водород долгое время хранили в сжатом либо жидком виде. Жидкий водород требует специального «криогенного» хранения (то есть в теплоизолированных контейнерах) и особого обращения из-за опасности взрыва. На фото огромный сосуд с жидким водородом в экспериментальной вакуумной камере в Исследовательском центре Льюиса (теперь Исследовательский центр Джона Гленна — John Glenn Research Center, NASA), 1967 год. Фото: NASA/GRC/Paul Riedel, Lloyd Trunk/Wikimedia Commons/PD

рения. Остаётся единственный экологически чистый способ получения водорода — извлечение его из воды, которой на Земле намного больше, чем углеводородного сырья, и она, очевидно, доступнее. Самый распространённый способ получения водорода из воды — электролиз, то есть разложение воды под действием электрического тока:

2H2O = 2H2 + O2

Побочный продукт электролиза — только кислород, однако этот процесс исключительно энергоёмкий. Для получения 1 кг водорода (напоминаем, теплотворная способность такого количества газа при 100%-ном КПД составит около 40 кВт∙ч) нужно затратить 40—50 кВт∙ч электроэнергии. Таким образом, расход энергии оказывается больше (а с учётом реальной эффективности использования конечного продукта — минимум вдвое больше), чем энергия, полученная на выходе. Что касается денежного эквивалента, то затраты на производство водорода путём электролиза оцениваются в $3—7 за 1 кг, что существенно выше, чем при конверсии углеводородов. И электролизом воды получают лишь 2% производимого водорода.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Девять значимых событий 2021 года в физике и астрономии Девять значимых событий 2021 года в физике и астрономии

Самые важные события прошедшего года в физических и астрономических областях

Наука и жизнь
Дикие стримы: возвращение Дикие стримы: возвращение

Бесконечно смотрим на птиц, рыб, белок

N+1
Силой мысли, или что обещает нам Илон Маск Силой мысли, или что обещает нам Илон Маск

Чего же Маск хотел в сфере нейроинтерфейсов, что сделал и что сможет сделать

Популярная механика
Секреты легкого пара Секреты легкого пара

Какие правила соблюдать, чтобы получить максимум пользы от парения в бане?

Домашний Очаг
Кругом тёзки Кругом тёзки

В живом мире плодятся всё новые и новые тёзки

Наука и жизнь
Несломленная свобода Несломленная свобода

Как паркур в Газе нашел свой собственный мир среди войны

Men’s Health
Самуил Маршак против Владимира Ленина Самуил Маршак против Владимира Ленина

Доктор Фрикен — совсем другой Маршак, нежели тот, к которому мы привыкли

Дилетант
Opel Zafira Life — автомобиль, который подходит и многодетным отцам, и холостякам Opel Zafira Life — автомобиль, который подходит и многодетным отцам, и холостякам

Opel Zafira Life — едва ли не лучший микроавтобус для путешествий с семьей

Maxim
Суррогатное материнство — больше не стыдно: доказываем на примере звезд Суррогатное материнство — больше не стыдно: доказываем на примере звезд

Кто из знаменитостей стал счастливым родителем, обратившись к суррогатной матери

VOICE
Другой разговор! Другой разговор!

Какую диету выбрать, чтобы держать себя в форме? И нужно ли вообще ее выбирать?

Лиза
Загадочный гештальт Загадочный гештальт

Что такое гештальт и зачем его закрывать?

Лиза
10 культовых фильмов, которым в 2022-м году исполняется 20 лет 10 культовых фильмов, которым в 2022-м году исполняется 20 лет

В этой подборке мы вспомнили 10 культовых картин, которые празднуют юбилей

Cosmopolitan
Надежда Бабкина. Ягодка опять Надежда Бабкина. Ягодка опять

Надя Бабкина не всегда была в чести, иной раз ощущала себя ненужным элементом

Коллекция. Караван историй
Музыкальная революция на Уолл-стрит: в 90-х Дэвид Боуи выпустил облигации, основал провайдера и  открыл виртуальный банк Музыкальная революция на Уолл-стрит: в 90-х Дэвид Боуи выпустил облигации, основал провайдера и  открыл виртуальный банк

Боуи был одним из первых, кто осознал важность продвижения музыки через интернет

VC.RU
Адаптивная оптика: как рассмотреть звёзды на небе? Адаптивная оптика: как рассмотреть звёзды на небе?

Россыпь звезд, будто подмигивающих наблюдателю, выглядит очень романтично

Популярная механика
Страх смерти и магазины у дома: что угрожает крупным торговым центрам Страх смерти и магазины у дома: что угрожает крупным торговым центрам

Эксперты и участники рынка назвали главные риски для мегамоллов

Forbes
«Мог стать знаменитым танцовщиком, но поднимаю с земли какашки»: как устроена миллиардная индустрия выгула собак в США «Мог стать знаменитым танцовщиком, но поднимаю с земли какашки»: как устроена миллиардная индустрия выгула собак в США

Легко ли гулять с питомцами и с какими причудами собачников приходится мириться?

VC.RU
Как завести виртуальную подругу в симмуляторе отношений, или во что превратился Тамагочи Как завести виртуальную подругу в симмуляторе отношений, или во что превратился Тамагочи

Как люди заводят себе виртуальных подруг в приложениях

Playboy
У кого больше секса: у женатых или холостых, у молодых или в возрасте? У кого больше секса: у женатых или холостых, у молодых или в возрасте?

Кому достается весь секс, пока некоторым его явно не хватает?

Maxim
Как оформить договор купли-продажи автомобиля. Полная инструкция Как оформить договор купли-продажи автомобиля. Полная инструкция

Разбираемся в нюансах заполнения ДКП

РБК
Может ли физика опровергнуть существование Бога Может ли физика опровергнуть существование Бога

Почему мы не видели нарушения законов физики во Вселенной?

Популярная механика
Рынок в хаки: как геополитика мешает инвесторам Рынок в хаки: как геополитика мешает инвесторам

На что стоит обращать внимание инвесторам во время геополитической напряженности

Forbes
Игры — не только развлечение. 6 ключевых принципов создания образовательных игровых проектов Игры — не только развлечение. 6 ключевых принципов создания образовательных игровых проектов

Геймдизайнер рассказывает об игровых инструментах в обучении

Популярная механика
Бетонная труба, винная бочка и самолет: 10 самых необычных отелей в мире Бетонная труба, винная бочка и самолет: 10 самых необычных отелей в мире

Особенные отели для тех, кому "олинклюзивы" уже надоели

Playboy
10 важных устройств 2021 года 10 важных устройств 2021 года

2021 год в гаджетах: роботы-курьеры, планшеты, маячки, наушники

VC.RU
Скорая праздничная помощь: как избавиться от изжоги и тяжести в животе Скорая праздничная помощь: как избавиться от изжоги и тяжести в животе

Как устранить последствия праздничных перееданий и что делать, чтобы их не было

Cosmopolitan
«Чего там идти-то?..» «Чего там идти-то?..»

«Буревестник» затонул при таких обстоятельствах, что все виновные были на виду

Дилетант
Филлеры могут привести к бронхиту и пневмонии. Врач о рисках «уколов красоты» Филлеры могут привести к бронхиту и пневмонии. Врач о рисках «уколов красоты»

Если ты думаешь, что знаешь о филлерах всё, то ошибаешься

VOICE
Несладкая жизнь Несладкая жизнь

Исследователи называют сахар ингредиентом, вызывающим сильное привыкание

Лиза
Картина, написанная служанкой Картина, написанная служанкой

Необычная история портрета графа Орлова-Чесменского

Дилетант
Открыть в приложении