Десять значимых событий прошедшего года в области физики и астрономии

Наука и жизньНаука

Десять значимых событий 2020 года в физике и астрономии

Авторы исследования сравнили движение сгустков электронов по материалу при баллистической проводимости с движением автомобилей по шоссе. Рисунок: Yun-Yi Pai

1Новый вид проводимости

Физики из Питтсбургского университета (США) открыли, что в одномерных проводниках электроны могут образовывать сгустки из двух, трёх, четырёх и даже пяти экземпляров с разными спинами, которые ведут себя как новые типы частиц. При протекании тока они движутся по проводнику очень быстро, не сталкиваясь и не рассеиваясь на атомах. Благодаря этому проводник не выделяет тепло. Такое явление получило название баллистической проводимости. Статья об открытии опубликована в феврале в журнале «Science».

Новое электронное состояние материи исследователи обнаружили в каналах материала, состоящего из алюмината лантана и титаната стронция. Они сравнили это квантовое явление с тем, как кварки связываются вместе, образуя нейтроны и протоны. До этого спаривание электронов наблюдалось при переходе к сверхпроводимости, в данном же случае их объединение происходит без перехода в сверхпроводящее состояние. Авторы работы заявляют, что новые частицы могут также найти применение в области квантовых вычислений, а само открытие — новый шаг к следующему этапу квантовой физики.

2Электрическое поле управляет спинами ядер

Способ управлять спинами атомных ядер с помощью внешнего электрического поля нашли физики из Университета Нового Южного Уэльса (Австралия) — об этом они сообщили в марте в журнале «Nature».

Контроль и обнаружение ядерных спинов с помощью магнитного резонанса широко используются для анализа материалов и полей в химии, медицине, материаловедении и горном деле. Ядерные спины также фигурировали в ранних предложениях по твердотельным квантовым компьютерам.

Однако управлять отдельными ядрами с помощью магнитного поля трудно, поскольку его сложно как локализировать, так и экранировать. К тому же генерация нужного магнитного поля требует сложного оборудования и значительных токов. Управление с помощью электрических полей решает эту проблему. Их можно создавать на кончике микроскопического электрода и достаточно точно концентрировать в нужном месте.

Художественное изображение того, как электрод нанометрового размера можно использовать для локального управления квантовым состоянием одиночного ядра внутри кремниевого чипа. РисунокUW/TonyMelov

Новый метод основан на идее, предложенной ещё в 1961 году нобелевским лауреатом Николасом Бломбергеном. Ядерный электрический резонанс изменяет связи вокруг ядра в кристаллической решётке, приводя к его переориентации. Такие ядра можно использовать в качестве особо точных датчиков деформации, а также электрических и магнитных полей.

3Необычное поведение ядерных сил на сверхмалых расстояниях

В феврале большая международная команда физиков коллаборации CLAS, работающая с данными, полученными ускорителем частиц Лаборатории Джефферсона (США), сообщила в журнале «Nature» о необычном взаимодействии нуклонов (протонов и нейтронов). Оказалось, что сильное взаимодействие, связывающее нуклоны в ядрах атомов, может их не только притягивать, но и отталкивать, когда расстояние между ними крайне мало. Открытие имеет огромное значение для понимания ядерных систем в целом и компактных космических объектов вроде нейтронных звёзд в частности.

Особенность ядерных сил — крайне малый радиус действия (10–13 см), что на порядок меньше размера тяжёлых ядер. Так что, с точки зрения этих сил, большинство нуклонов даже в крошечном ядре атома расположены достаточно далеко друг от друга. В данном исследовании физики впервые смогли подробно изучить, что происходит с сильным взаимодействием на сверхкоротких расстояниях.

Признаком взаимодействия пары нуклонов на очень малых расстояниях служит их движение с большой скоростью. Обнаружить эти редкие случаи можно, бомбардируя атомы огромным количеством электронов чрезвычайно высокой энергии. После столкновения энергия электрона, с которой он рассеивается, пропорциональна импульсу соответствующего нуклона. Просмотрев столкновения квадриллионов электронов, исследователи сумели выделить и вычислить импульсы нескольких сотен подходящих пар нуклонов. Это и позволило проследить трансформацию ядерного взаимодействия.

Детектор CLAS диаметром 9 м окружает мишень, в которую попадают ускоренные электроны. Вылетающие из мишени частицы измеряются слоями детекторов частиц разных типов. Фото: JLab

Физики также обнаружили, что вопреки ожиданиям поведение нуклонов на таких малых расстояниях описывается достаточно простой моделью на уровне протонов и нейтронов, не учитывающей чрезвычайно сложные взаимодействия между кварками и глюонами. Ранее они полагали, что придётся рассматривать «суп» из них.

Россию в коллаборации CLAS представляют Институт теоретической и экспериментальной физики им. А. И. Алиханова (ИТЭФ) и НИИ ядерной физики им. Д. В. Скобельцына (НИИЯФ) МГУ.

4Лазеры достигли аттосекундного диапазона

Для изучения очень быстрых процессов, подобных движению электронов в веществе, нужен инструмент, работающий на порядок быстрее. Движения электронов в атомах происходят за время порядка нескольких аттосекунд (1 ас = 10–18 с). Это время настолько мало, что свет за 1 ас проходит расстояние, соответствующее всего лишь размеру атома.

Такие процессы физики исследуют и управляют ими с помощью коротких лазерных импульсов. Для этого излучение лазера должно иметь очень высокую частоту и малую длину волны. Подходящие импульсы генерируют так называемые рентгеновские лазеры на свободных электронах, но их длительность до сих пор превышала 10 фемтосекунд (1 фм = 1000 ас). Трудную задачу заставить их генерировать более короткие импульсы с заданными свойствами решила международная команда исследователей, в которую вошли и российские физики. Результаты работы опубликованы в феврале в журнале «Nature». Сотрудники НИИЯФ МГУ Алексей Грум-Гржимайло и Елена Грызлова внесли определяющий вклад в теоретическое обоснование метода, экспериментально реализованного на рентгеновском лазере на свободных электронах FERMI (Триест, Италия).

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Космические тоннели Космические тоннели

Существуют ли кротовые норы?

Популярная механика
Типы старения лица и кожи: какие бывают и как их определить Типы старения лица и кожи: какие бывают и как их определить

Какие типы старения лица и организма существуют?

РБК
Надышаться ветром Надышаться ветром

Мозаичное панно из рассказов жителей Хабаровска о приметах разных времен

Вокруг света
Вечные ценности Вечные ценности

Интерьер в духе дворцовой классики с иконами современного дизайна

SALON-Interior
Конец эпохи Аресибо Конец эпохи Аресибо

Cамый известный в мире радиотелескоп разрушился

Наука и жизнь
Антиоксиданты: зачем они нужны и где их искать Антиоксиданты: зачем они нужны и где их искать

Какие продукты стоит внести в меню, чтобы поддерживать тело в тонусе?

Правила жизни
Великое нашествие Великое нашествие

Вторжение монголов обратило русских государей в деспотов ордынского типа

Дилетант
«Что знает Мариэль?»: зачем колкое драмеди меняет местами детей и родителей «Что знает Мариэль?»: зачем колкое драмеди меняет местами детей и родителей

Как «Что знает Мариэль?» по-новому рассматривает детско-родительские отношения

Forbes
Магнитная. Тайны космических всплесков Магнитная. Тайны космических всплесков

Магнетары — нейтронные звезды, помогающие раскрыть загадки космоса

Наука и жизнь
Нестор Энгельке Нестор Энгельке

Нестор Энгельке внес топоропись в энциклопедию современного искусства

Собака.ru
Секретарь Республики Секретарь Республики

Нормальная жизнь Никколо ди Бернардо деи Макиавелли оборвалась 16 декабря 1512 г

Наука и жизнь
Квадратная правда: как расширить границы квартиры, не покупая новую Квадратная правда: как расширить границы квартиры, не покупая новую

Как маленькая квартира может стать больше большой

Inc.
Открытие, получившее признание через век Открытие, получившее признание через век

Владимир Буткевич первым задался проблемой соотношения бактерий

Наука и жизнь
Нина Гребешкова: «Лёня на меня действовал магически» Нина Гребешкова: «Лёня на меня действовал магически»

В его присутствии мне хотелось быть умнее. Не хохотать без особой причины

Караван историй
Неизвестный минерал из вулкана Толбачик Неизвестный минерал из вулкана Толбачик

Сотрудники СПбГУ обнаружили новый минерал на территории вокруг вулкана Толбачик

Наука и жизнь
«Ким Ир Сен: Вождь по воле случая» «Ким Ир Сен: Вождь по воле случая»

Как будущий правитель КНДР стал партизаном

N+1
Лучше, чем жизнь Лучше, чем жизнь

Традиционно самыми ресурсоемкими считались спецэффекты для кино

Популярная механика
Счастье незавершенного гештальта Счастье незавершенного гештальта

Что помогает осознать предназначение и как оно создает нас?

Psychologies
Грюнвальдские мечи польских королей Грюнвальдские мечи польских королей

Грюнвальдская битва и пропавшие королевские регалии

Дилетант
Вот оно какое, наше лето Вот оно какое, наше лето

Чем занять ребенка на даче: советы для детей любого возраста

Лиза
Вселенная Эдгара По Вселенная Эдгара По

Иногда чуткие к достижениям науки писатели могут предугадывать будущее

Наука и жизнь
Заполняя белые места на карте Заполняя белые места на карте

Некоторые ключевые вехи экспедиционной истории РГО

Вокруг света
Любители подземной тишины Любители подземной тишины

Что может быть страннее белых растений!

Наука и жизнь
«Черный квадрат» раздора «Черный квадрат» раздора

Краткая история главной картины ХХ века

Weekend
Долгий путь от «учебки» к Победе Долгий путь от «учебки» к Победе

В минометной роте любили песни: о поэтах на фронте Отечественной войны

Знание – сила
Астрономы отыскали экстремально яркие события разрыва звезд сверхмассивными черными дырами Астрономы отыскали экстремально яркие события разрыва звезд сверхмассивными черными дырами

Астрономы описали класс рекордно ярких транзиентов

N+1
Сосны против берез Сосны против берез

О дуализме рязанской романтики

Weekend
Мария Лисовая: «Работоспособность — мой основной инструмент» Мария Лисовая: «Работоспособность — мой основной инструмент»

Актерская профессия — это сплошные вопросы

Коллекция. Караван историй
Раскрыть потенциал мозга Раскрыть потенциал мозга

Как научиться слышать наш мозг и развить навыки с приставкой «супер»

Psychologies
Артистка, которую невозможно забыть: 5 знаковых ролей Евгении Добровольской Артистка, которую невозможно забыть: 5 знаковых ролей Евгении Добровольской

Культовые роли Евгении Добровольской, по которым мы будем её помнить

Правила жизни
Открыть в приложении