Приручить энергию звезд
Каким ученые видят решение грядущего энергетического дефицита
Международное энергетическое агентство предрекает, что к 2040 году спрос на электричество вырастет на 70 процентов. Решение грядущей энергетической проблемы ученые видят в приручении термоядерного синтеза – реакции, которая питает Солнце и звезды. N + 1 вместе с ГК «Росатом» рассказывают, почему это источник безопасной, чистой и практически безграничной энергии на Земле.
Саровский эксперимент
Топливом для термоядерного синтеза может служить дейтерий, запасов которого в морях и океанах хватит на сотни миллионов лет. В паре с ним может быть использован тритий, который нарабатывается в специальных реакторах. В отличие от существующих атомных реакторов, где расщепляются ядра плутония или урана, в случае с термоядерным синтезом нет риска неконтролируемой цепной реакции. Поскольку ядра не расщепляются, а сливаются, нет радиоактивных продуктов распада атомных ядер, требующих утилизации в быстрых ядерных реакторах или захоронения. В случае же чрезвычайной ситуации не будет многолетнего радиоактивного заражения, так как тритий, единственная радиоактивная составляющая термоядерного топлива, имеет гораздо меньший, по сравнению с топливом АЭС, период полураспада.
Впервые об использовании термоядерного синтеза для получения энергии заговорили в 1950-х годах в СССР. И вот спустя полвека исследований, разработок, испытаний ученые подошли к этапу, когда термоядерный синтез уже в обозримом будущем может доказать свою выгоду и целесообразность.
В Сарове к 2022 году планируется построить установку, реализующую концепцию лазерного термоядерного синтеза, при котором вещество мишени нагревается и сжимается до нужных температур и давления. Эту концепцию впервые в 1964 году предложили академики Николай Басов и Олег Крохин. Установка в Сарове будет в полтора раза мощнее самой крупной из ныне действующих подобных установок National Ignition Facility, которая расположена в США. Это пока еще не термоядерный реактор, такие установки не производят электричество, так как получаемое тепло просто отводится. Но позволяют проводить эксперименты для совершенствования технологии удержания плазмы. Одна из целей проекта заключается в демонстрации коммерческой жизнеспособности подобных реакторов.
Два к одному
Синтез подразумевает создание чего-то нового. Так и при термоядерном синтезе происходит слияние двух ядер атомов легких элементов, в результате чего образуется более тяжелый элемент. Наряду с образованием более тяжелых элементов выделяется большое количество избыточной кинетической энергии. Чтобы синтез произошел, нужно сблизить ядра легких элементов до расстояния размеров самого ядра. Тогда в действие вступят ядерные силы, которые вынудят два ядра слипнуться в одно. Это дает в 3 миллиона раз больше энергии, чем при сгорании одной молекулы углеводорода.
Однако соединить два ядра не так просто. Слиянию ядер препятствуют электрическая сила отталкивания Кулона. Эта сила растет обратно пропорционально квадрату расстояния между ними:
То есть для синтеза ядер и выделения избыточной энергии необходимо совершить работу против сил отталкивания.
Для термоядерного синтеза могут быть использованы элементы, близкие к гелию по атомной массе. Реакции синтеза возможны с участием лития, бора, гелия, бериллия и других. Легче всего происходит слияние изотопов водорода: дейтерия D и трития T. Ядро дейтерия – дейтрон – содержит один протон и один нейтрон. Два нейтрона и протон образуют ядро трития – тритон. Сечение и скорость протекания реакции D + T гораздо выше, чем у других кандидатов на участие в синтезе. Величина сечения реакции показывает вероятность взаимодействия элементарной частицы с атомным ядром или другой частицей и измеряется в барнах. Для реакции D + T значительно проще достичь состояния, когда выделившаяся энергия превысит затраты на процесс слияния. Температура, при которой будет проходить реакция термоядерного синтеза, составляет 10 килоэлектронвольт или 100 миллионов градусов. Тогда как другие элементы придется нагревать до 100 килоэлектронвольт. Такие температуры на Земле пока недостижимы.
Сами элементы достаточно доступны, чтобы производить энергию долго и в больших объемах. Дейтерий содержится в морской воде в соотношении одна часть на 6500 частей водорода. Тритий – это радиоактивный элемент, нестабилен, но имеет относительно малый период полураспада 12,4 года. В природе тритий появляется за счет соударения космического излучения с ядрами атомов азота в верхних слоях атмосферы. Поэтому его можно найти в осадочных породах. Также тритий получают как отход ядерных реакторов АЭС. Но для промышленного использования его нарабатывают в специальных реакторах, облучая стальные стержни с добавлением лития. В результате слияния реакции D + T получается гелий с атомной массой 4 и энергией 3,5 мегаэлектронвольт и быстрый нейтрон с энергией 14,1 мегаэлектронвольт. Таким образом, нейтрон, улетая, уносит большую часть энергии.