Честная премия
Имена лауреатов Научной премии Сбера 2023 года станут известны уже 12 декабря. Напомним, что награда была учреждена в 2021 году с ежегодным общим призовым фондом 60 млн руб. В прошлом году в номинации «Цифровая вселенная» лауреатом стал академик РАН Александр Холево. В номинации «Науки о жизни» победу одержал академик РАН Александр Габибов, а лауреатом в номинации «Физический мир» стал академик РАН Юрий Оганесян. Как у них прошел год, какие новые идеи появились и как им в этом помогла Научная премия Сбера — читайте в эксклюзивных интервью.
Академик РАН Александр Холево: «Премия для меня — это престиж и признание заслуг перед наукой»
— Александр Семенович, прошел год с тех пор, как вы были удостоены Научной премии Сбера. Что за этот год удалось нового осуществить, или, может быть, появились интересные научные идеи?
— Этот год был напряженным для всех, и для меня в том числе. Если говорить о современном состоянии дел в квантовой информатике, то оно характеризуется тем, что акценты перенесены на практические реализации, на попытки применения квантовых технологий, получение если не квантового преимущества, то, по крайней мере, квантовой пользы.
В Математическом институте РАН моя группа занимается квантовой теорией информации, и для нас большой стимул — это внутренняя логика развития науки. Конечно, мы не можем в существующих условиях не прислушиваться к запросам нынешних героев. А герои сейчас — это физики-экспериментаторы, которые, несмотря ни на какие сложности, особенно в нашей стране, связанные с разного рода ограничениями внешнего характера, строят кубиты, а из кубитов — даже небольшие квантовые компьютеры.
— Что здесь могут сделать теоретики?
— Одно из направлений применения — дать инструментарий для практики. Выработать эталоны качества, разработать теоретические границы, которым должны удовлетворять параметры реальных устройств. Одно из главных достижений классической теории информации — установление возможности надежного, помехоустойчивого функционирования систем передачи и обработки данных при наличии шумов, которые описываются колмогоровской теорией вероятностей. Для квантовых информационных систем проблема шумов и помех приобретает решающее значение.
Эта проблема решается методами квантовой теории информации. Достижения квантовой теории информации могут и должны быть фундаментом для дальнейшего прогресса квантовых информационных технологий.
— О каких технологиях речь?
— О таких, как квантово-защищенные каналы связи и сети коммуникаций, квантовые вычисления. Инструментарий квантовой теории информации — меры корреляции, «сцепленности», скорости передачи квантовых каналов, энтропийные характеристики, такие как пропускная способность, анализ криптостойкости — могут быть использованы при разработке средств сертификации и количественной оценки квантовых информационных систем.
— Давайте поговорим о конкретных достижениях.
— В проходящем году непосредственно я изучал измерительные каналы. В частности, занимался измерительными каналами для случая бозонных систем с непрерывными переменными.
— Что это за системы? Они имеют отношение к бозону Хиггса?
— Разве что только в том, что фотоны, кванты электромагнитного поля — это тоже бозоны. Они описываются алгебраически одинаковыми коммутационными соотношениями. А есть еще фермионы, которые описываются соотношениями антикоммутации.
— Чем интересны ваши бозоны?
— Тем, что они позволяют передавать информацию. То, чем я занимался — это то, как квантовую информацию, которая содержится в фотонах, наилучшим образом трансформировать в полезную классическую информацию. Можно сказать, что это конечная точка квантовой линии связи. Допустим, есть линия связи между Москвой и Питером. На ее конце всегда обязательно стоит измеритель.
Вообще, если у вас есть любое квантовое информационное устройство, тот же квантовый компьютер, все равно конечным этапом обработки информации станет преобразование квантового состояния в классические данные. Это осуществляется измерительным прибором. Канал — это то, по чему передается информация. И специфичность измерительного канала в том, что он трансформирует квантовую информацию, содержащуюся в матрицах плотности, в классические данные. Измерительные каналы — частный случай гибридных систем обработки информации.
— Что за гибридные системы?
— Гибридные системы используют не только преобразования квантовых состояний, но также и классическую переработку информации. Если говорить шире, то сейчас все большее распространение получает точка зрения, что, по крайней мере, на данном этапе такие гибридные устройства, которые используют элементы квантовых вычислений, обязательно должны быть сопряжены с классическим компьютером или даже суперкомпьютером.
— А зачем?
— Дело в том, что сами по себе квантовые устройства сейчас недостаточно мощны. Они состоят из десятков кубитов, в лучшем случае — из сотни. На современном этапе использовать такие устройства с помощью классических компьютеров, которые сейчас приобрели небывалую мощность и она продолжает возрастать,— это правильно и позволяет добиться хороших результатов.