Самые важные события прошедшего года в физических и астрономических областях

Наука и жизньНаука

Девять значимых событий 2021 года в физике и астрономии

Материал подготовил кандидат физико-математических наук Алексей Понятов

Эксперимент «Muon g − 2». В центре детекторного зала — сверхпроводящее магнитное накопительное кольцо. Фото: Reidar Hahn/Fermilab/CC BY-SA 4.0

1Мюоны атакуют стандартную модель

Национальная ускорительная лаборатория им. Энрико Ферми (США) сообщила, что, по данным эксперимента «Muon g − 2», магнитный момент мюона всё же больше, чем предсказывает современная теория микромира — Стандартная модель. Она была разработана в 1970-х годах и с тех пор прошла все проверки, сохранившись до наших дней практически без изменений. Но исследователи на протяжении полувека не оставляют попыток найти отклонения от неё, так называемую Новую физику. Если результат мюонного эксперимента подтвердится, то это может стать долгожданным свидетельством существования Новой физики. Возможно, работы в этом направлении приведут не только к уточнению теории, но и открытию новых фундаментальных частиц.

Целый ряд элементарных частиц имеет собственное магнитное поле, которое характеризуется величиной, получившей название «магнитный момент». Так, электрон и его более тяжёлый родственник мюон должны иметь магнитный момент, точно равный 2 (в соответствующих единицах измерения). Первые признаки того, что с магнитным моментом мюона что-то не так, исследователи получили в экспериментах по его измерению в Брукхейвенской национальной лаборатории (США) в 1997-2001 годах. Выявленное крошечное отличие от двух оказалось немного больше, чем предсказывали расчёты по Стандартной модели — теории элементарных частиц. Физики назвали обнаруженное явление мюонной магнитной аномалией. Хотя точность измерения была недостаточно высока, чтобы с уверенностью говорить о реальности расхождения, она была достаточно большой, чтобы вызвать сенсацию и дискуссию среди специалистов.

Дело в том, что, согласно современной квантовой физике, мюоны постоянно испускают и поглощают различные виртуальные частицы, которыми так и кишит физический вакуум вокруг них. Теория предсказывает, что это должно изменять магнитный момент мюона, делая его отличным от 2. Этот эффект, названный «g − 2» (g минус два), должен наиболее ярко проявляться именно у мюонов, которые примерно в 200 раз массивнее электронов. Теоретическое значение g − 2 было получено в результате точного вычисления вкладов всех известных частиц. Поэтому в значительном отличии эксперимента от предсказаний теории могут быть виноваты неучтённые неизвестные типы частиц. Так что эксперимент с мюоном вселил многим физикам надежду на то, что вскоре будут открыты новые фундаментальные частицы.

Чтобы проверить результаты, экспериментаторы в 2013 году перевезли оборудование через полстраны в Национальную ускорительную лабораторию Ферми (Fermilab, США), где можно получить более чистые пучки мюонов, и модернизировали установку. В новом эксперименте пучок мюонов движется по кольцу диаметром 15 метров, удерживаемый полем мощного магнита. Одновременно это магнитное поле заставляет магнитный момент мюонов (грубо говоря, направление «север-юг» магнита) прецессировать, поворачиваться, описывая конус, подобно оси волчка или юлы. Скорость прецессии зависит от магнитного момента частиц. Измерив её с очень большой точностью, исследователи вычисляют магнитный момент мюонов.

Очередной сбор данных был начат в 2018 году, и 7 апреля 2021 года исследователи представили результаты первого года работы, опубликовав их в журнале «Physical Review Letters». Новый результат почти полностью совпал со старым, расхождение между теоретическими и экспериментальными значениями не исчезли. Хотя за 15 лет методы теоретических расчётов эволюционировали и их точность сильно возросла. Отметим, что исследователи измерили g − 2 с точностью до 46 миллионных долей процента. Значит, это не было ни статистической случайностью, ни продуктом какой-то необнаруженной ошибки в эксперименте.

Любопытны и меры предосторожности, предпринятые исследователями, чтобы избежать подсознательной подгонки результатов. Те, кто проводил анализ, не знали точной частоты цифровых часов в приборах, которая необходима для расчёта значения g − 2. В итоге результаты были изображены на графике, оси которого имели несколько неопределённые масштабы. Точное значение частоты было известно только двум физикам, не являющимся членами коллаборации. Только 25 февраля 2021 года на телеконференции, в которой участвовало более 200 членов команды, два соруководителя эксперимента открыли конверт, содержащий секретную тактовую частоту. Когда они ввели число в компьютер, тот показал истинное значение g − 2.

Однако сомнения остаются. Вместе новые и старые результаты увеличили отклонение экспериментального значения от теоретического лишь до 4,2σ. Сигмой (σ) в статистическом анализе обозначают стандартное отклонение. Опуская детали, скажем, что с помощью стандартного отклонения можно оценить достоверность полученного результата. Отличие в интервале от 3σ до 5σ даёт основания предполагать реальность нового явления. Однако в своих выводах экспериментаторам необходимо быть осторожными, поскольку история знает немало случаев, когда открытия с подобными отличиями в итоге не подтверждались. Многолетний опыт исследований показал, что уверенно говорить об открытии можно, только когда результаты отличаются более чем на 5σ.

Россию в коллаборации «Muon g − 2», занимавшейся этими исследованиями, представляют Институт ядерной физики им. Г. И. Будкера (г. Новосибирск) и Объединённый институт ядерных исследований (г. Дубна).

2Физики квантово запутали макрообъекты

Когда произносят слово «квантовый», все, как правило, представляют какие-нибудь очень маленькие, микроскопические объекты вроде атомов, электронов или фотонов. Именно они в первую очередь демонстрируют поведение и эффекты, которые описывает квантовая механика. Однако макроскопические объекты, состоящие из большого числа атомов, тоже могут проявлять квантовые свойства. Правда, условия для этого создать трудно, и лишь точные и изобретательные эксперименты могут их обнаружить. Но зачем, спрашивается, надо это делать? Оказывается, у этих исследований есть важная практическая сторона: создание очень чувствительных и точных сенсоров или сверхбыстрых устройств для вычислений, преобразования информации и коммуникаций.

коммуникаций. В этом году исследователям из Национального института стандартов и технологий (NIST, США) удалось экспериментально изучить квантовые явления в макроскопических механических системах. Они показали, как можно сгенерировать в них квантовое запутанное состояние и экспериментально доказать его наличие. Результаты работы были опубликованы в журнале «Science».

В качестве объекта исследований физики использовали две сверхпроводящие алюминиевые пластины, которые служат одной из пластин конденсатора. Те включены в электрическую цепь, изменение напряжения в которой приводит к фиксируемым с помощью радиолокации механическим колебаниям мембран. Экспериментаторы использовали микроволновые импульсы для возбуждения системы и затем измеряли связь (корреляцию) колебаний мембран. Суть дела в том, что тонкие статистические взаимосвязи между их движениями оказались невозможными для классического мира и могли возникнуть только за счёт квантовой запутанности.

Идея подобного эксперимента не нова, она возникла в NIST около десяти лет назад, но тогда механическими элементами были отдельные атомы. Мембраны же огромны, по квантовым меркам. Их размер 20 × 14 микрометров, толщина 100 нанометров и масса 70 пикограмм, что соответствует примерно 1 триллиону атомов. Запутывать массивные объекты крайне сложно, потому что они сильно взаимодействуют с окружающей средой, в результате чего могут разрушаться хрупкие квантовые состояния.

Крошечные алюминиевые мембраны, которые удалось квантово запутать и точно измерить их связанные квантовые свойства. Фото: John Teufel /NIST

Исследователи применили два одновременных микроволновых импульса для охлаждения мембран (отбора энергии с целью уменьшения теплового шума), ещё два — для их запутывания и последние два — для усиления и записи сигналов, представляющих квантовые состояния пластин. Решение этой задачи потребовало тщательного подбора частоты и длительности импульсов.

Кванты колебаний мембран эквивалентны квазичастицам, так называемым фононам. Вот для них и была выявлена квантовая запутанность, которую удавалось поддерживать в течение примерно миллисекунды, что весьма долгое время в квантовом мире.

В классическом мире колебания мембран в рассматриваемых условиях должны были быть случайными. Однако эксперимент выявил необычные закономерности, свидетельствующие о том, что они запутались. Чтобы быть уверенными, исследователи провели эксперимент 10 тысяч раз, применяя специальные тесты.

3Новые вехи в развитии термоядерного синтеза

В эксперименте по инерциальному термоядерному синтезу, который проходит в Национальном комплексе зажигания (National Ignition Facility, NIF), входящем в состав Ливерморской национальной лаборатории им. Лоуренса (США), удалось получить 70% выхода от термоядерной реакции по отношению к энергии, затраченной на поддержание реакции. Несмотря на то, что это значение всё ещё не достигло уровня безубыточности (100%), оно более чем на порядок превысило предыдущие результаты, и некоторые эксперты оценили данный результат как наиболее значительный прогресс в инерциальном синтезе с момента его начала в 1972 году.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

За кулисами пуска За кулисами пуска

Старт космической ракеты – зрелище без преувеличения грандиозное

Популярная механика
Куда сходить в Москве: 5 музеев техники, в которых интересно Куда сходить в Москве: 5 музеев техники, в которых интересно

Раритеные ПК, первые компьютеры Apple и машины из "Звездных войн" — музеи Москвы

CHIP
Долгая счастливая жизнь Долгая счастливая жизнь

Старение – это естественно, но не нормально

Популярная механика
Эра двумерных кристаллов: что может графен Эра двумерных кристаллов: что может графен

Что же такое двумерные кристаллы и причем тут анализ данных?

Популярная механика
БИНТИ БИНТИ

Бюро иностранной научно-технической информации

Наука и жизнь
Какой-то неправильный оргазм: что не так с женским возбуждением в популярных фильмах Какой-то неправильный оргазм: что не так с женским возбуждением в популярных фильмах

Почему в кино показывают не трушный секс

Playboy
Успеть за 15 секунд Успеть за 15 секунд

Людям надоело притворяться – в TikTok они остаются собой

Популярная механика
9 самых загадочных историй кораблекрушений 9 самых загадочных историй кораблекрушений

Для моряков и дайверов корабли — живые существа

Популярная механика
Сценарий, написанный жизнью Сценарий, написанный жизнью

Иной раз жизнь выдаёт такие «коленца», что сценаристам остаётся лишь записывать

Дилетант
Всегда готовь! Всегда готовь!

Какие блюда знаменитости готовят на праздник

Лиза
Сила слова Сила слова

«Искусственный интеллект нужен человеку» – сообщил нам искусственный интеллект

Популярная механика
О каких возможностях принтера вы не знали О каких возможностях принтера вы не знали

Бесцветные чернила и другие чудеса нанотехнологий – на обычном принтере

Популярная механика
Гусятина приглянулась жителям Ярославля еще в домонгольское время Гусятина приглянулась жителям Ярославля еще в домонгольское время

Основным источником мяса для ярославцев были гуси

N+1
Хьюстон, у нас проблема: как понять, что отношения мешают тебе развиваться Хьюстон, у нас проблема: как понять, что отношения мешают тебе развиваться

Порой спутник жизни может серьезно тормозить личностный рост

Cosmopolitan
Бюджетные правила: как грамотно экономить деньги Бюджетные правила: как грамотно экономить деньги

Правила экономии средств от инвестиционного советника

Forbes
Вспомнить все: 12 главных сериалов 2021 года — от Мэйр до Теда Вспомнить все: 12 главных сериалов 2021 года — от Мэйр до Теда

Пока год не обзавелся хитами, предлагаем вспомнить проверенные временем проекты

РБК
Красота не панацея: супермодели, которым изменяли любимые мужчины Красота не панацея: супермодели, которым изменяли любимые мужчины

Изменяют всем: богатым, успешным, хозяйственным, добрым девушкам

Cosmopolitan
«Люди больше не хотят гибкого расписания — они хотят полностью контролировать своё время» «Люди больше не хотят гибкого расписания — они хотят полностью контролировать своё время»

Эксперимент Best Buy: офисные сотрудники сами выбирали где и сколько работать

VC.RU
«Алису люблю сильнее»: мать Тимати рассказала о разном отношении к внукам «Алису люблю сильнее»: мать Тимати рассказала о разном отношении к внукам

Мать рэпера Тимати призналась, что имеет тесную связь с семилетней внучкой

Cosmopolitan
Дикие стримы: возвращение Дикие стримы: возвращение

Бесконечно смотрим на птиц, рыб, белок

N+1
Арт и деньги, два стола Арт и деньги, два стола

В интерьере высокого класса обязательно должно быть искусство

Robb Report
Побег тринадцати Побег тринадцати

Самый дерзкий массовый побег за всю историю российской тюремной системы

Esquire
Ирина Померанцева. Песни молодости Ирина Померанцева. Песни молодости

Леонид Борткевич — сладкоголосый Орфей, который сводил с ума женщин СССР

Коллекция. Караван историй
Бренд и лояльность клиентов ценнее финансов: история любимой покупки Баффета — кондитерской See’s Candys Бренд и лояльность клиентов ценнее финансов: история любимой покупки Баффета — кондитерской See’s Candys

Как кондитерская See’s Candys появилась и расцветала

VC.RU
Как похудеть в спине: советы тренера и 3 полезных упражнения Как похудеть в спине: советы тренера и 3 полезных упражнения

Почему толстеет спина, как убрать жир на животе и надо ли вообще это делать?

Cosmopolitan
Главные модные конфузы Меган Маркл: звездный стилист упрекнул герцогиню Главные модные конфузы Меган Маркл: звездный стилист упрекнул герцогиню

Даже Меган Маркл допускает ошибки, которые портят самые блестящие образы

Cosmopolitan
Сколь велик шанс, что вокруг — Матрица, а мы на самом деле живем в симуляции? Сколь велик шанс, что вокруг — Матрица, а мы на самом деле живем в симуляции?

«Гипотеза симуляции» — все вокруг реальность или симуляция?

Популярная механика
Как вывести экран телефона на телевизор Как вывести экран телефона на телевизор

Мы собрали способы, которые помогут вывести видео с телефона на телевизор

CHIP
Споры за бизнес «Б.Ю. Александров» и Natura Siberica, арест основателя Group-IB: заметные конфликты в 2021 году Споры за бизнес «Б.Ю. Александров» и Natura Siberica, арест основателя Group-IB: заметные конфликты в 2021 году

Что произошло и чем закончились главные споры по версии vc.ru

VC.RU
Приходи на меню посмотреть Приходи на меню посмотреть

Как во Фландрии принимают в гости лучших шефов мира

Tatler
Открыть в приложении