«Контур жизни: Математик в поиске скрытой геометрии Вселенной»
Гарвардский математик, лауреат Филдсовской премии Яу Шинтун дал геометрическое обоснование «первой струнной революции», предложил новые идеи в понимании массы и кривизны, а также доказал стабильность Вселенной. В своей автобиографической книге «Контур жизни: Математик в поиске скрытой геометрии Вселенной» (издательство «Альпина нон-фикшн»), переведенной на русский язык Натальей Лисовой, Яу Шинтун рассказывает о том, как начинался его путь в науке, и об актуальных концепциях математики и теоретической физики. N + 1 предлагает своим читателям ознакомиться с фрагментом, посвященным открытию «зеркальной симметрии» и влиянию, которое она оказала на исчислительную геометрию.
Вскоре после появления в Гарварде Грин начал работать вместе с Ронином Плессером, тогда аспирантом гарвардского физика Камрана Вафы. На базе более ранних работ Вафы и других физиков, включая Ланса Диксона, Дорона Гепнера, Вольфганга Лирча и Николаса Уорнера, Грин и Плессер начали играть с 6-мерными многообразиями Калаби — Яу, которые, как считалось, определяют форму «дополнительных» пространственных измерений в теории струн. Эти двое взяли одну фигуру Калаби — Яу и повернули ее совершенно особым образом, получив своего рода зеркальное изображение — хотя и совершенно иной формы. Они выяснили, что эти две различные фигуры Калаби — Яу объединяет скрытое родство, поскольку обе они порождают одинаковую физику. Грин и Плессер назвали это явление «зеркальной симметрией» и опубликовали на этот счет статью в 1990 г. Две фигуры Калаби — Яу, порождающие одинаковую физику, стали называться зеркальными многообразиями.
Зеркальная симметрия представляет собой образец дуальности — явления, которое в теории струн возникает довольно часто, а в физике вообще всякий раз, когда одна и та же общая физическая ситуация может быть описана двумя картинами, или моделями, которые настолько отличаются на первый взгляд, что кажется, что они не имеют между собой ничего общего. Эта парадигма нашла отклик лично у меня, потому что она хорошо увязывалась с понятиями инь и ян древнекитайской философии и конкретно даоистской мысли, которая всегда подчеркивает комплементарность — и единство — двух противоположных на первый взгляд сил. Концепция дуальности привела к нескольким замечательным открытиям в теории струн и за ее пределами. Зеркальная симметрия оказалась особенно продуктивной в этом отношении.
Примерно через год после прорывного открытия, совершенного Грином и Плессером, физик Филип Канделас из Университета Техаса и трое его коллег — Пол Грин, Ксения де ла Осса и Линда Паркс — провели масштабный расчет, призванный проверить концепцию зеркальной симметрии. В ходе этой работы Канделас с коллегами использовал зеркальную симметрию для решения одной из задач по «исчислительной геометрии», насчитывавшей уже целое столетие. Исчислительная геометрия — область математики, посвященная подсчету числа объектов в геометрическом пространстве или на поверхности. В задаче, за которую взялись Канделас и его коллеги, речь идет о подсчете числа кривых, которые можно вписать в так называемую 3-мерную квинтику, несингулярные варианты которой (то есть не имеющие отверстий) составляют, вероятно, самое простое 6-мерное многообразие Калаби — Яу, какое только можно найти. Термин «квинтика» отражает тот факт, что это пространство определяется полиномиальным уравнением 5-й степени (включающим такие члены, как x5 или y5 ). Оно называется «3-мерным», потому что представляет собой многообразие с тремя комплексными — и, соответственно, шестью действительными — измерениями.
Эту задачу иногда называют задачей Шуберта, потому что в конце XIX в. немецкий математик Герман Шуберт решил ее простейший вариант и подсчитал количество кривых первой степени (то есть прямых) на квинтике. В 1986 г. математик Шелдон Кац решил более сложный вариант этой задачи, рассматривающий кривые второй степени (такие как окружность) на квинтике. Канделас с коллегами решил следующую по сложности задачу, определив число кривых третьей степени (или сфер), которые можно вписать в квинтику.
И вот как зеркальная симметрия помогла это сделать: если решить задачу третьей степени на реальной квинтике было очень трудно, то на зеркальном к этой поверхности многообразии — объекте, который Грин и Плессер уже построили, — она решалась намного проще. Зеркальная симметрия, объяснил Грин, предлагает способ «хитроумно реорганизовать вычисления так… чтобы их выполнение значительно упростилось». Проводя свои вычисления не на оригинальной квинтике, а на ее зеркальном партнере, команда Канделаса сумела получить точный ответ для числа кривых третьей степени: 317 206 375.