Технологии / Нейросети
Системное образование
Технологии машинного обучения и нейросети в 2016 году пришли в потребительские сервисы.
Основатель компании ABBYY Давид Ян уверен, что скоро у каждого человека появятся цифровые ассистенты. «Они смогут быстро найти нужный файл в почте или телефон партнера, которого вы встретили на конференции, но не помните его имени», — говорит Ян. Все это уже умеет персональный ассистент Findo, над которым команда предпринимателя работает с 2014 года. Findo анализирует открытую информацию в интернете, содержимое электронной почты, данные из заметок и облачных файлов. В разработки компания ABBYY, по словам Яна, вложила $3 млн, еще $4 млн проект привлек от венчурных и стратегических инвесторов, среди которых Flint Capital и компания Foxit (ведущий поставщик ПО для работы с PDF-документами). В декабре 2016 года у Findo уже было около 65 000 пользователей. «Findo понимает запросы вроде «Найди презентацию от кого-то из Лондона про медицинское страхование, которую я получал пару недель назад», правда, пока только на английском языке, — рассказывает предприниматель. — Но скоро сможет анализировать еще больше типов запросов и находить документы, близкие по смыслу».
Еще несколько лет назад такое распознавание смысла текстов и изображений казалось невозможным. Теперь с подобными задачами справляются все больше приложений, работающих по методам машинного обучения, в том числе глубоких нейронных сетей, как в случае с Findo. Нейросети — обучаемые системы, построенные по аналогии с сетью нейронов у человека. Они дали возможность выполнять задания, для которых очень сложно составить конкретный алгоритм. Нейросети состоят из образующих слои узлов, обрабатывающих информацию. Новая информация меняет состояние всей системы, проходя через слои нейронов. Этот процесс называется обучением нейросети. Алгоритм на основе нейросетей, например, может анализировать множество текстов на каком-либо языке и автоматически группировать слова, близкие по смыслу, определять смысловую тональность текста, вычленять конкретные сущности и отношения между ними.
Приручение машин
Об алгоритмах машинного обучения активно заговорили в 2016 году, когда бизнес стал использовать их в приложениях, понятных потребителям. Например, компания DeepMind, купленная Google более чем за $500 млн, снизила расходы на охлаждение дата-центра корпорации на 40%. Теперь DeepMind хочет научить искусственный интеллект сражаться в Starcraft II с реальными геймерами. Cуперкомпьютер IBM Watson, читающий 200 млн страниц за три секунды, будет систематизировать данные в сфере здравоохранения, 80% которых сегодня даже не принимаются в расчет при лечении пациентов. Алгоритмы машинного обучения позволили Microsoft сделать систему для предсказания результатов матчей чемпионата Европы по футболу. Facebook (соцсеть признана в РФ экстремистской и запрещена) использует машинное обучение для распознавания лиц на фото, анализа текстов и их переводов. В сентябре 2016 года Google, Facebook (соцсеть признана в РФ экстремистской и запрещена), Amazon, IBM и Microsoft объединили усилия для создания искусственного интеллекта, который позволит им обмениваться данными. Впервые методы машинного обучения появились в середине XX века. Суть их в том, что система не программируется заранее, а обучается в процессе работы, анализируя информацию об объектах и их признаках, соотнося их друг с другом. Система может учиться с учителем (когда ей дают правильные ответы) или без него (когда у нее есть только сырые данные). Каждый вид обучения предполагает, что объекты группируются в обучающей выборке по-разному. Отличаются и механизмы определения признаков, и то, как система определяет правильность своего решения.