«Алхимия и жизнь»
Как люди и материалы меняли друг друга
Благодаря материалам, свойствами которых ученые научились управлять, мы создали технологии и вещи, сформировавшие облик современного мира. Правда, некоторые из них повлияли на нас неожиданным образом: например, точные механические часы заставили нас иначе спать, а ограничения телеграфа сказались на том, как мы пишем. В книге «Алхимия и жизнь: Как люди и материалы меняли друг друга» (издательство «Альпина нон-фикшн»), переведенной на русский язык Дарьей Алюковой, материаловед и популяризатор науки Айнисса Рамирес рассказывает, как восемь изобретений — кварцевые часы, стальные рельсы, медные кабели связи, фотопленка с серебром, электрическая лампа с углеродной нитью, магнитный жесткий диск, стеклянная лабораторная посуда и кремниевые чипы — повлияли на человеческий опыт. Предлагаем вам ознакомиться с фрагментом, посвященным изобретению новых типов оптического стекла, которые позволили создать точные оптические приборы и повысить качество измерений.
Благодаря материалам, свойствами которых ученые научились управлять, мы создали технологии и вещи, сформировавшие облик современного мира. Правда, некоторые из них повлияли на нас неожиданным образом: например, точные механические часы заставили нас иначе спать, а ограничения телеграфа сказались на том, как мы пишем. В книге «Алхимия и жизнь: Как люди и материалы меняли друг друга» (издательство «Альпина нон-фикшн»), переведенной на русский язык Дарьей Алюковой, материаловед и популяризатор науки Айнисса Рамирес рассказывает, как восемь изобретений — кварцевые часы, стальные рельсы, медные кабели связи, фотопленка с серебром, электрическая лампа с углеродной нитью, магнитный жесткий диск, стеклянная лабораторная посуда и кремниевые чипы — повлияли на человеческий опыт. Предлагаем вам ознакомиться с фрагментом, посвященным изобретению новых типов оптического стекла, которые позволили создать точные оптические приборы и повысить качество измерений.
Сквозь тусклое стекло
Отто Шотт мечтал делать открытия в аккуратной и чистой химической лаборатории. К несчастью, он родился в семье стеклодувов в немецком Виттене в 1851 г., а их работа означала жар, пот и пыль мастерских. Из поколения в поколение его предки как со стороны матери, так и со стороны отца занимались этим тяжелым, скучным ремеслом, и само собой подразумевалось, что он присоединится к отцу на стекольной фабрике. Но у молодого Отто Шотта были другие планы. Начиная со старших классов в школе он посещал все занятия, какие только мог, чтобы подготовиться к получению ученой степени в органической химии. Шотт, невысокий и худощавый человек с длинными подкрученными усами, хотел оставить след в истории, занимаясь интеллектуальной работой по изучению материалов, а не тяжелым физическим трудом по их изготовлению. В 1870-х гг. химия в Германии проложила путь многим потрясающим нововведениям, особенно в производстве лекарств, удобрений и взрывчатки. Химики-органики были заворожены возможностью копировать природные вещества, такие, как ванилин, и искусственно воссоздавать их в лаборатории. Природа расставалась с секретами неохотно, но, когда их раскрывали, молекулы превращались в новые продукты, которые производили тоннами. Одной из таких побед, наверняка вызвавшей интерес у Шотта, стало создание в 1856 г. пурпурного красителя под названием «мовеин», когда Уильям Перкин превратил каменноугольную смолу в краситель ультрамодного цвета. Когда Шотт был ребенком, цветовая палитра тканей состояла из черного, красного или синего и все краски делали из растений, минералов и животных. Но благодаря пурпуру лабораторного происхождения появилась возможность создавать самые разные, более яркие цвета, сочетая его с другими пигментами, к тому же для этого не требовалось убивать живых существ. Германия стала крупнейшим производителем такой краски, монополистом, который, на радость публике, в больших объемах изготавливал «Пурпур Перкина», как его называл Чарльз Диккенс. Мир был восхищен возможностями органической химии, и Отто Шотт тоже.
Мечтая о танцующих молекулах, Шотт подал заявление в магистратуру Лейпцигского университета, чтобы написать докторскую диссертацию по органической химии. Но для него не нашлось места. Разочарованный, но не сломленный, он попытался попасть в органическую химию через боковую дверь — магистратуру по сельскохозяйственной химии. Но вскоре он потерял интерес к этому предмету и бросил занятия. Его мечта не сбылась, и он вернулся к стеклу — на сей раз в рамках аспирантуры, которую окончил в 1875 г. в Йенском университете, популярном и процветающем заведении, где когда-то учился и Карл Маркс. Диссертация Шотта была озаглавлена так: «Вклад в теорию и практику изготовления стекла» — этот предмет он хорошо знал с детства. Закончив учебу, он поступил на работу на стекольной фабрике, публикуя статьи о плавлении, упрочнении и химических элементах в составе стекла. Шотт вернулся в родной Виттен в 1878 г., продолжая экспериментировать со стеклом в фабричном цеху. И хотя его работа не воспламенила интерес мировой общественности, с помощью огня и химических веществ он надеялся понять устройство этого старинного материала и переосмыслить его.
Примерно в 250 милях к западу от Шотта с его смутными желаниями в лаборатории университетского города Йена томился от собственного бессилия Эрнест Аббе. Заслуженный профессор физики и директор обсерватории с телескопом, Аббе перестал доверять стеклянным линзам в своих микроскопах и телескопах. Профессор с типичным обликом математика: грива волос, которую он причесывал пальцами, заросшее седеющей бородой лицо и очки на кончике носа — заметил в линзах своих приборов множество изъянов, из-за чего через них было сложно что-либо рассмотреть. Иногда в стекле попадались пузырьки, полосы или бороздки, напоминающие узкую часть кильватера корабля. Порой стекло было мутным, тусклым или со свилями — неоднородностями, похожими на прожилки в мраморе. А главное, качество самого стекла было низким, потому что цвета белого изображения — например, синий и красный — разделялись, как если бы мы смотрели на изображение через современные анаглифические 3D-очки. С такими ужасными материалами не приходилось рассчитывать на научные прорывы, ведь стекло было сердцем любого из оптических инструментов. Без хорошего стекла наука была слепа.