Жесткое небо «Спектра-РГ»
Уникальная спутниковая платформа, вооруженная парой телескопов, составляет самую детальную карту вселенной в рентгеновских лучах.
Если бы мы могли увидеть небо в рентгеновском диапазоне, зрелище не слишком сильно напоминало бы привычные космические просторы. В этих лучах Луна почти невидима, а самыми яркими объектами оказываются Солнце и... далекий Скорпион Х-1 – двойная система, расположенная в 9000 световых лет от Земли. Энергия рентгеновских фотонов значительно выше, чем у инфракрасных или оптических, и обычные звезды довольно слабо излучают в этом жестком диапазоне. Поэтому «рентгеновское зрение» различило бы намного меньше светил, зато позволило бы заметить немало других интересных объектов. Рентгеновские и гамма-лучи испускаются остатками сверхновых – газовыми облаками, разогретыми ударной волной разорвавшейся звезды. В рентгеновском спектре светятся двойные системы, которые включают обычную звезду и ее плотную соседку. Так, нейтронная звезда в составе Скорпиона Х-1 активно перетягивает плазму от своей компаньонки, разгоняя и раскаляя до миллионов градусов, при которых она начинает излучать даже в жестком диапазоне волн. За счет падения (аккреции) вещества ярко светятся в рентгене и окрестности сверхмассивных черных дыр.
«Может случиться так, что нейтронная звезда потеряет соседку, оставшись в одиночестве, – рассказывает заместитель директора Института космических исследований (ИКИ) РАН Александр Лутовинов. – При этом она приобретает очень большую скорость вращения и превращается в пульсар. Из его полюсов выбрасываются релятивистские джеты – узкие потоки частиц, разогнанных до околосветовых скоростей, прекрасно видимые в рентгеновском диапазоне. Так устроена знаменитая Крабовидная туманность: в ее центре – мощный пульсар, который нагревает окружающее облако газа и пыли». Впрочем, даже если бы мы действительно заполучили рентгеновское зрение, то всего этого не увидели. Атмосфера Земли прозрачна для оптических лучей, для части инфракрасного и радиодиапазона, но не для фотонов более жесткой части спектра. «Эти волны не достигают поверхности планеты, что является большой удачей для жизни, но и серьезной проблемой для наших наблюдений», – добавляет Александр. Поэтому рентгеновская астрономия началась лишь с появлением ракетной космической техники, и любой телескоп, смотрящий на небо в этих жестких лучах, обязательно космический.
Ловля рентгена
Первые такие аппараты мало отличались от обычных счетчиков Гейгера. На орбиту отправляли герметичную газовую камеру и устройство для автоматического подсчета высокоэнергетических частиц, пролетающих через нее. Чтобы хотя бы примерно оценить направление, с которого приходит сигнал, к системе достаточно добавить коллиматор – в простейшем случае просто экранировать ее со всех сторон, оставив узкую «форточку» для прилетающих фотонов. Вращая всю установку, можно сканировать пространство, фиксируя, сколько излучения приходит и откуда. Конечно, разрешение таких систем не слишком высоко, но они бывают весьма полезны – например, американская обсерватория RXTE, которая работала на орбите вплоть до 2012 года, была устроена именно так.
Более совершенные телескопы достигают большого углового разрешения, точно локализуя источник каждого сигнала. Для этого необходимо манипулировать приходящими лучами – преломлять и отражать их, как это делают обычные оптические телескопы с помощью линз и зеркал. Однако рентгеновские фотоны несут слишком много энергии, и, если поставить перед ними обычное зеркало, они просто войдут в него на некоторую глубину, пока не будут поглощены. Отразиться лучи смогут лишь в том случае, если будут падать на поверхность под очень острым углом, словно плоский камень, скачущий по воде, оставляя блинчики.