Новое чувство астрофизики
Миссия LISA станет самым большим научным инструментом в истории человечества. Гигантский космический интерферометр с плечами по 2,5 млн км позволит регистрировать гравитационные волны в диапазоне, недоступном для наземных обсерваторий, и поможет астрономам «почувствовать» то, что невозможно увидеть.
Зрение – главное из наших чувств, и в астрономии это особенно заметно. Все, что мы знаем о далеких экзопланетах, звездах и галактиках, получено с помощью телескопов, улавливающих фотоны электромагнитного излучения. Они не только «усилили» наши глаза, но и расширили их чувствительность, охватив диапазон от гамма-лучей до длинных радиоволн. Однако некоторые объекты скрыты от любого излучения плотными облаками, а другие слишком компактны и темны для того, чтобы их удалось увидеть. Самый лучший телескоп не разглядит сверхмассивную черную дыру в центре галактики или множество наполняющих ее двойных звезд, чересчур далеких и тусклых.
Впрочем, есть способ наблюдать и такие объекты. Для этого понадобится использовать новые инструменты, не видя, но «слыша» происходящие далеко в космосе события. Поймать гравитационные волны, «складки» пространства времени, которые разбегаются от некоторых массивных источников – тесных двойных систем, сливающихся черных дыр и т.п. Появление этой «гравитационной ряби» было предсказано еще Эйнштейном в 1916 году, но на то, чтобы ее зарегистрировать, потребовалось без малого столетие.
В 2015 году наземные гравитационно-волновые обсерватории проекта LIGO заметили событие, получившее обозначение GW150914, – первую пойманную людьми гравитационную волну. Расчеты показали, что она пришла от пары черных дыр массой в несколько десятков Солнц каждая, которые пережили быстрое и катастрофическое слияние почти в 1,4 млрд световых лет от нас. Уже через пару лет грандиозная находка сделала главных авторов проекта LIGO нобелевскими лауреатами. Чуть позже европейский детектор Virgo присоединился к LIGO, и с тех пор три детектора наблюдают подобные события более-менее регулярно. Среди их источников попадаются сливающиеся дыры массами до 150 солнечных и нейтронные звезды. Есть и другие источники гравитационных волн, например быстро вращающиеся слегка деформированные нейтронные звезды, но их сигнал очень слаб и пока не поддается фиксации.
Чем космос лучше земли
Примерно так происходит и с традиционными наземными телескопами. Их разрешающая способность ограничена искажениями, которые неизбежно вносит атмосфера. А электромагнитные волны некоторых диапазонов и вовсе не достигают поверхности планеты, поэтому рентгеновские и гамма-телескопы обязательно космические. Работе LIGO и Virgo мешает сама Земля: эти детекторы невероятно чувствительны к любому сотрясению и движению, полностью избавиться от которых, находясь на сейсмически активной и густонаселенной планете, невозможно.
Детекторы гравитационных волн используют лазерный луч, который расщепляется надвое полупрозрачным зеркалом и отправляется по двум длинным, до нескольких километров, плечам – вакуумированным трубам, уложенным перпендикулярно друг другу. В конце пути свет отражается от зеркал и возвращается в вершину L-образной конструкции. Здесь лучи взаимодействуют, причем длина волны лазера заранее подобрана так, чтобы за счет интерференции они полностью гасили друг друга. Но если гравитационная волна хотя бы слегка сдвинет одно из зеркал, изменив длину плеча на величину, сравнимую с размером атомного ядра, – на детекторе появится свет.