Прав ли сказавший, что наша жизнь – игра?

Вокруг светаИстория

Теория игр

Прав ли сказавший, что наша жизнь – игра, и может ли бесстрастная математика найти оптимальную стратегию, чтобы победить в этой игре?

Текст: Анатолий Глянцев

Играли ли вы сегодня во что-нибудь? Не спешите говорить «нет». Вы договорились о чем-то с другом, коллегой, членом семьи? Значит, вы играли. Выполняли свои служебные или бытовые обязанности? Это тоже игра. Делали покупки? Строили планы? Да-да, вы поняли. Жизнь вообще сплошная игра, по крайней мере, с точки зрения теории игр.

Что наша жизнь?

Теория игр – это не раздел экономики, политологии или социологии. Это раздел математики. Именно поэтому она описывает на едином языке любые игры, от шахмат до семейных споров. Мы увидим ниже, как в одну и ту же игру могут играть повздорившие супруги, азартные водители и хладнокровные политики. Игроки даже не обязаны быть людьми. Вашим партнером по игре может быть компьютерная программа или такая абстрактная категория, как рыночный спрос. Или даже сама природа в лице слепой случайности, если вы играете, скажем, в орлянку (этот раздел теории так и называется – игры с природой). Единственное, что отличает игры друг от друга – это их правила.

Теория игр – сложная наука, плотно сросшаяся с другими разделами высшей математики. Но ее важнейшие идеи можно объяснить без формул и на самых простых примерах (что совсем не значит, что до этих идей было легко додуматься!).

Однако не является ли сама теория игр не более чем игрой ума? Способна ли она подсказать полезные решения в бизнесе, политике, отношениях с людьми – во всех тех ситуациях, которые она дерзает описывать?

Что ж, приведем несколько примеров. В середине XX века специалисты по теории игр занимались вопросами ядерного сдерживания и гонки вооружений. В 1990-е «теоретико-игровики» из компании Market Design заработали миллионы долларов на аукционах по продаже радиочастот. Дадим слово одному из богатейших людей и известнейших инвесторов в мире Уоррену Баффету: «Представьте себе, что некий эксцентричный миллиардер (только не я!) делает такое предложение: если законопроект будет отклонен, этот эксцентричный миллиардер любым допустимым способом пожертвует миллиард долларов в пользу политической партии, которая отдаст больше всего голосов за принятие законопроекта. Благодаря такому дьявольскому применению теории игр законопроект спокойно пройдет через Конгресс, на что наш эксцентричный миллиардер не потратит ни цента – а это говорит о том, что он не так уж эксцентричен». Что имеет в виду Баффет? Каждая партия захочет получить миллиард и уж точно не захочет отдать его конкурентам. Поэтому все будут голосовать за законопроект, и он, конечно, будет принят. Но хитроумный богач не обещал никому платить, если закон будет принят! Так он добьется цели, применив не деньги, а знания.

Стратегия без стратега

Самое важное понятие в теории игр – стратегия. Стратегия игрока – это вся цепочка ходов, которые он делает. Даже если две линии поведения отличаются на один ход (вывести вперед королевскую пешку или ферзевую?), это уже две разные стратегии. Более того, стратегию определяют не только ходы, но и позиции, из которых те сделаны. Одно дело атаковать, когда противник безрассудно раскрылся, и совсем другое – лезть на подготовленную защиту.

Вы можете возразить, что играете в шахматы без продуманной и заранее выбранной стратегии. Просто делаете ход, который в данный момент считаете правильным. А уж о семейных спорах и деловых отношениях и вовсе не думаете в подобных терминах. Но, с точки зрения теории игр, то, что делает игрок, – и есть его стратегия. Так, с точки зрения лингвиста, все, что мы говорим – речь, даже если это отнюдь не торжественная речь политика перед народом. Так что коль скоро мы всю жизнь играем в игры, то и ежечасно пользуемся стратегиями. Даже если не подозреваем об этом, как господин Журден не подозревал, что говорит прозой. В простейшей формулировке задача теории игр – найти лучшую стратегию.

Теория игр считает игроков идеально рациональными, хотя реальные люди зачастую ведут себя иррационально

Дети и монеты

Для разминки рассмотрим игру, которую используют и в книжках по развитию детей, и в популярных телешоу. Аня и Боря по очереди убирают монеты со стола. За один ход можно убрать от одной до трех монет. Побеждает тот, кто забирает последнюю монету. Исходно на столе 10 монет, начинает Аня.

Возможные стратегии Ани непросто даже подсчитать в уме, не то что проанализировать каждую из них. У девочки три варианта первого хода. Затем ходит Боря, и на каждое из трех его возможных решений у Ани три варианта ответа, и так далее.

Многие в такой ситуации начали бы играть наугад. Возможно, осторожный игрок начал бы с одной монеты, агрессивный – с трех, а кто-то предпочел бы середину. Но математики знают идеальное решение, и для этого им вовсе не нужно перечислять все стратегии.

Первое правило теории игр – считать с конца, с победного хода. Если ваш последний ход принес победу, то каким был предпоследний? Ане нужно, чтобы на ее последнем ходу на столе лежало от одной до трех монет. Девочка заберет их и победит. Значит, Борю на его последнем ходу нужно оставить с четырьмя монетами. Он с ними останется, если на его предыдущем ходу будет восемь монет. Сколько бы из них мальчик ни взял, Аня в ответ возьмет столько, чтобы осталось четыре. Стало быть, на первом ходу ей нужно забрать две монеты из 10. Придерживаясь этой стратегии, девочка неминуемо выиграет.

Игры, в которые играют люди

Аня и Боря играли в очень специфическую игру. В ней у одной из сторон была стратегия, обрекающая другую на поражение. В большинстве игр это не так. Например, в шашках идеальные стратегии есть за обе стороны, и, если оба игрока их придерживаются, получается ничья. Как обстоит дело в шахматах, неизвестно. Эта игра очень сложна и до сих пор не просчитана полностью. Шутка ли: по приблизительным оценкам, различных шахматных партий около 10 120 (1 с 120 нулями). Это больше числа атомов в известной Вселенной!

Более того, игрокам не обязательно быть соперниками. Антагонистические игры, где выигрыш одного означает проигрыш другого – лишь одна из многочисленных разновидностей игр. Допустим, вы покупаете на рынке огурцы. У вас есть две стратегии: купить или нет, и у продавца две: продать или не продать. Если цена устраивает обе стороны, то покупка выгодна всем! Вы получаете вожделенные огурцы, а продавец – деньги.

Делая ход в шахматной партии или партии в шашки, мы выбираем стратегию. В принятии любого жизненного решения – та же логика

В поисках равновесия

Идеальной – как говорят математики, доминирующей – стратегии выгодно придерживаться при любой стратегии партнера. Если доминирующая стратегия есть, то задача теории – ее отыскать. А если ее нет? Тогда в игру вступает более тонкое понятие – равновесие Нэша.

Игроки находятся в равновесии Нэша, если их стратегии являются оптимальным ответом друг на друга. Может быть, Боря и не выигрывает, но его стратегия – лучшее, что можно предпринять в ответ на усилия Ани. И наоборот, стратегия Ани – лучший ответ на действия Бори.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Старость – не данность Старость – не данность

Можно ли на самом деле хотя бы замедлить старение?

Вокруг света
Любовь не помеха: почему люди изменяют даже в счастливых отношениях — 6 обидных причин Любовь не помеха: почему люди изменяют даже в счастливых отношениях — 6 обидных причин

Почему измена происходит даже в семьях, где супруги по-настоящему счастливы?

Psychologies
Миллион цветных деталей Миллион цветных деталей

Весь мир играет в конструкторы «Лего» семьдесят лет и не наигрался до сих пор

Вокруг света
Для измерения лунотрясений разработаны лазерные сейсмические датчики Для измерения лунотрясений разработаны лазерные сейсмические датчики

Как распределенное акустическое зондирование позволит измерять лунотрясения

ТехИнсайдер
Стихийные отношения Стихийные отношения

Громкие заявления о подъеме уровня океана голландцы не слышат, а видят

Вокруг света
Смена образа Смена образа

TLC-диета — один из самых простых и гуманных способов похудеть

Лиза
Парадокс Спящей красавицы Парадокс Спящей красавицы

Возможно ли впасть в оцепенение на столетие и потом вернуться к жизни?

Вокруг света
Внутривенный аполипопротеин А1 не снизил риск осложнений при инфаркте миокарда Внутривенный аполипопротеин А1 не снизил риск осложнений при инфаркте миокарда

Введение CSL112 не приводит к снижению риска инфаркта миокарда

N+1
Выиграть жену Выиграть жену

Интеллектуальные игры сопровождали калмыков с детства

Вокруг света
Еще по одной: 10 мини-сериалов, которые можно посмотреть за вечер Еще по одной: 10 мини-сериалов, которые можно посмотреть за вечер

Необычные мини-сериалы, которые вы могли пропустить

Правила жизни
20 вещей, которые могут тебе пригодиться в постели 20 вещей, которые могут тебе пригодиться в постели

Объекты и явления, при помощи которых твой секс будет еще великолепнее

Maxim
Его Высокопреосвященство Его Высокопреосвященство

Арест и суд над венгерским кардиналом Йожефом Миндсенти

Дилетант
Горечь неволи Горечь неволи

В ходе Северной войны войсками Петра I были захвачены около 25 тысяч человек

Дилетант
Туманное будущее: как фильм-катастрофа «Всемирный потоп» обманывает зрителей Туманное будущее: как фильм-катастрофа «Всемирный потоп» обманывает зрителей

Как история про апокалипсис оказывается тихой метафорой внутренних изменений

Forbes
Герой прорыва Герой прорыва

Одним из главных героев Войны Судного дня стал израильский генерал Ариэль Шарон

Дилетант
Все фильмы ужасов «Пила» от худшего до самого убойного Все фильмы ужасов «Пила» от худшего до самого убойного

Почему некоторые ленты о Пиле прекрасны, а другие хочется распилить и сжечь

Maxim
Милютины Милютины

В отличие от большей части тогдашней элиты, Милютины поднялись из низов

Дилетант
Похитители молодости: 5 вещей в твоем доме, которые тихо приближают старость Похитители молодости: 5 вещей в твоем доме, которые тихо приближают старость

Экзогенные токсины в доме могут оказывать серьезное воздействие на организм

VOICE
Генерал-рекетмейстер Генерал-рекетмейстер

Единственный портрет Боровиковского, разгадка которого заняла более полувека

Дилетант
Как на телефоне обрезать музыку: приложения и онлайн-сервисы Как на телефоне обрезать музыку: приложения и онлайн-сервисы

Из любого трека можно сделать рингтон, но как обрезать музыку для звонка?

CHIP
Как сила воли влияет на наши решения Как сила воли влияет на наши решения

Как и зачем тренировать силу воли?

Psychologies
Искателям приключений Искателям приключений

Знакомимся с Kavi 9 — одной из моделей молодой турецкой верфи Kavi Yachts

Y Magazine
Канны-2024: зачем Коппола 40 лет думал о Римской империи Канны-2024: зачем Коппола 40 лет думал о Римской империи

Каким получился «Мегалополис» Фрэнсиса Форда Копполы

РБК
Медные слитки из минойского дворца Агия-Триада отлили из уральской руды Медные слитки из минойского дворца Агия-Триада отлили из уральской руды

Ученые проанализировали состав 15 медных слитков, обнаруженных на Крите

N+1
Как не постареть раньше времени: 9 правил Как не постареть раньше времени: 9 правил

Как сохранить молодость надолго?

Psychologies
Что такое неглект и как с ним бороться Что такое неглект и как с ним бороться

Неглект: что такое пассивное насилие? Как оно проявляется?

РБК
Как оригинально! Декрета, Гипотенуза и другие популярные имена для девочек в СССР Как оригинально! Декрета, Гипотенуза и другие популярные имена для девочек в СССР

На популярность имен новорожденных в разное время влияли исторические события

Лиза
На оценку студента влияют инициалы фамилии! Эксперты рассказали поразительный факт На оценку студента влияют инициалы фамилии! Эксперты рассказали поразительный факт

Влияет ли фамилия человека на риск получить заниженную оценку?

ТехИнсайдер
Дмитрий Леонтьев: BAIC X75 – машина для удовольствия Дмитрий Леонтьев: BAIC X75 – машина для удовольствия

Кроссовер BAIC X75 – тихое наслаждение

4x4 Club
«Я видел и слышал космос во всей его полноте»: что переживает человек, когда сходит с ума «Я видел и слышал космос во всей его полноте»: что переживает человек, когда сходит с ума

Что чувствует человек, который перестает осознавать границы нормальности?

Psychologies
Открыть в приложении