Представлена модель для предсказания структуры белков AlphaFold 3
Она работает на сервере с квотой и не разрешает изучать потенциальные лекарства
Компании Google DeepMind и Isomorphic Labs, принадлежащие Alphabet, представили AlphaFold 3 — новую версию модели на основе машинного обучения для предсказания точной структуры белков и их взаимодействий друг с другом и другими веществами. По заявлению разработчиков, она стала первой, превзошедшей по точности физические методы исследования. Статья о модели принята для ускоренной публикации в Nature. Кроме того, о разработке рассказывают редакционные подкаст и статья, а также пресс-релизе Google.
Знание структуры белков необходимо в самых разных областях биологии — от понимания фундаментальных механизмов функционирования живых организмов до описания патогенеза болезней и рациональной разработки лекарств. До появления машинного обучения ее определение представляло собой крайне сложную, трудоемкую и затратную задачу. Ситуация начала меняться в 2018 году, когда сотрудники DeepMind представили первую высокоэффективную модель AlphaFold 1, которая сразу победила в конкурсе CASP. Вторая, более эффективная, версия AlphaFold 2 увидела свет в 2020 году и до сих пор служила стандартом в исследованиях по определению белковых структур. С ее помощью были разработаны вакцины от малярии, различные лекарства, ферменты и многое другое.