Непрерывную речь декодировали по фМРТ
Неинвазивный декодер восстановил текст из корковых семантических представлений
Американские исследователи разработали неинвазивный декодер, который по активности мозга может реконструировать непрерывный текст — будь то история, которую человек слушает, или воображаемый рассказ, или даже суть видеоролика, в котором нет слов. Декодер обучали на данных фМРТ трех человек, которые 16 часов слушали истории. Модель не всегда могла предсказать точные слова по записям фМРТ, но передавала смысл историй. Результаты опубликованы в Nature Neuroscience.
Чтобы записать нейронную активность, необходимую для декодирования речи, нужно установить электроды прямо на мозг. Этот способ используют в исследованиях с парализованными людьми, которые не могут говорить, но инвазивность такой процедуры ограничивает ее применение. Декодеры, использующие неинвазивные записи активности мозга, способны расшифровывать отдельные слова или короткие фразы, но неизвестно, могут ли эти декодеры работать с непрерывным естественным языком.
Александр Хаc (Alexander Huth) из Техасского университета в Остине и его коллеги разработали декодер, который восстанавливает непрерывный текст из записей активности мозга, полученных неинвазивным способом — с помощью функциональной магнитно-резонансной томографии.
Серьезным ограничением было то, что сигнал фМРТ не успевает за нейронной активностью. Функциональная магнитно-резонансная томография измеряет изменения кровотока, вызванные нейронной активностью в той или иной части мозга. Чтобы сигнал фМРТ увеличился или снизился, требуется около 10 секунд. За это время англоговорящий человек может услышать или произнести более 20 слов. Выходит, что слов для декодирования больше, чем изображений фМРТ. Ученые решили это проблему так: научили декодер угадывать последовательность слов, оценивая, насколько вероятно каждое возможное слово могло вызвать конкретную записанную реакцию мозга, — и так выбирать лучшего кандидата, то есть самое вероятное слово.