Четвертое измерение: что умеет новая языковая модель от OpenAI GPT-4
С момента появления ChatGPT в интернете уже разошлись мемы с вакансией «выключателя», который должен вытащить вилку из розетки, если ИИ внутри модели оживет. Директор по развитию прикладных проектов Института искусственного интеллекта AIRI Манвел Аветисян рассказывает о том, что сейчас умеет новая версия основы популярного бота GPT-4 и как релиз новинки от OpenAI отразится на нашей жизни.
Эволюция языковых моделей
Бурное развитие умных языковых ботов началось с довольно простой мысли: в виде текста можно представить огромное количество задач, а значит, можно научить модели ИИ эти задачи решать. В 2017 году появились трансформерные архитектуры, способные обучаться на больших объемах текстов. Чуть позже ученые совместили обучение с подкреплением (Reinforcement learning, RL, технология, которая позволяет «хвалить» программу за правильные действия и «наказывать» за неправильные) с большими языковыми моделями, такими, как GPT-3 (Large Language Models, LLM). Получился ChatGPT.
Представьте себе игру в шахматы: подкрепление в ней — это результат игры. Компьютерному агенту на основе искусственного интеллекта необходимо научиться делать ходы, которые приведут к победе. Люди способны действовать с подкреплением, удаленным на годы вперед, например, долго и усердно трудиться в школе и университете, чтобы получить первую зарплату. Компьютеру сложно выполнять длинные последовательности действий для достижения итогового результата, и разработчикам приходится учить ИИ «заглядывать вперед» при выборе следующего шага. Исследователи начали обучать модели, способные отвечать на вопросы человека и интегрировать в них огромные объемы человеческой обратной связи.
Среди основных прорывов, полученных исследователями в последнее время, можно отметить:
- Toolformer, LLM от Meta (признана в России экстремистской организацией и запрещена): исследователи научили большие языковые модели обращаться к внешним инструментам (веб-поиску, переводчику, калькулятору).
- LLaMA, LLM от Meta (признана экстремистской организацией на территории РФ): ученые доказали, что объем данных для обучения модели важнее, чем ее сложность. Более легкие по вычислительным ресурсам модели с большими выборками обучающих данных обошли большие модели в качестве решения прикладных задач.
- ChatGPT на Bing научился указывать источники тех или иных фактов, которые он приводит в ответе на вопрос.
Плюсы и минусы нового движка
GPT-4 — последняя из больших языковых моделей семейства GPT от OpenAI: GPT-2, GPT-3 и GPT-3.5, которая легла в основу первой версии популярного бота ChatGPT. Модель состоит из большого количества нейросетей, которые умеют обрабатывать, понимать, анализировать, интерпретировать и генерировать тексты на естественном языке. Несмотря на то что четвертая версия модели понимает 28 языков, включая малоресурсные валлийский язык и урду (близкий к хинди язык индоевропейской семьи), наилучшие результаты по-прежнему можно получить, используя для создания промптов (так называются фразы-запросы к модели) английский.
GPT-4 прошел проверку эффективности на множестве экзаменов — как академических, так и профессиональных. Порой работы модели превосходили результаты большинства параллельно тестируемых людей. Например, на смоделированном экзамене для адвокатов (Uniform Bar Examination) GPT-4 оказалась среди 10% лучших участников теста, в то время как ChatGPT оказался среди худших 10%. Кроме того, согласно данным технического отчета OpenAI, сгенерированные GPT-4 ответы нравились тестовой группе пользователей в 70,2% случаев чаще, чем ответы GPT-3.5. Впрочем, по словам самих создателей, разница между ответами от двух версий бота может показаться незаметной в процессе работы с интерфейсом.