Владимир Васильев – о влиянии больших языковых моделей на будущее человека

РБКHi-Tech

Владимир Васильев: «Гонка технологических «вооружений» уже началась»

Какое влияние на экономику и будущее человека окажет стремительное развитие больших языковых моделей и почему переход к общему искусственному интеллекту по степени влияния на мир сопоставим с изобретением ядерного оружия? Ответы на эти вопросы — в колонке эксперта Владимира Васильева

Автор: Владимир Васильев, исследователь данных, академический руководитель онлайн-магистратуры Skillfactory и ТГУ «Анализ естественного языка в лингвистике и IT»

NLP как средство общения машины и человека

Natural Language Processing, или обработка естественного языка, — это одна из трех основных областей знаний в науке о данных. Две другие области — классическое машинное обучение (Machine Learning) и компьютерное зрение (Computer Vision). Многие называют эти области искусственным интеллектом, хотя специалисты предпочитают термин Data Science.

С использованием NLP-технологий построены все виртуальные ассистенты, которых вы знаете: «Алиса», «Маруся», «Салют» и многие другие. А также все большие языковые модели вроде ChatGPT, Bard, LLaMa или GigaChat. NLP-алгоритмы обрабатывают текстовые данные, которые накопились в процессе использования человеческого языка. Все то, что мы произносим, пишем, печатаем и слышим, можно привести к текстовому формату и обработать с помощью NLP-алгоритмов.

Большие языковые модели: от кладезя знаний до генератора фейков

Современные GPT-подобные модели представляют собой класс больших языковых моделей (LLM, Large Language Models) на основе трансформерной архитектуры, которые еще называют генеративными нейросетями. Основным элементом трансформерной архитектуры является механизм внимания (Attention Mechanism), который позволяет модели фокусироваться на наиболее важных элементах последовательности текста при его обработке. У современных LLM большое число параметров. Например, GPT-3 (модель из семейства GPT) содержит 175 млрд параметров, а T5 (Text-to-Text Transfer Transformer) — более чем 11 млрд параметров.

Параметры модели — это множество весовых коэффициентов, которые изменяются и оптимизируются в процессе обучения модели. Итоговые значения этих параметров являются результатом обучения модели — они определяют, как модель обрабатывает и генерирует информацию. Считается, что языковая модель является большой, если содержит больше одного миллиарда параметров.

Современные большие языковые модели смогут «поговорить» с вами человеческим языком, помогут найти информацию из интернета или написать компьютерный код, а также сформулируют правдоподобный ответ. Неудивительно, что такие не виданные ранее способности современных LLM впечатлили за минувший год многих пользователей и подогрели интерес к ИИ во всем мире.

Однако LLM опираются в основном на знания, которые им «скормили» во время обучения, и используют базовые логические операции с доступной информацией, поэтому их ответ не всегда будет полным или полностью верным. Кроме того, модель может по-разному отвечать на один и тот же вопрос и даже галлюцинировать, то есть выдавать за факт попросту не соответствующую действительности информацию.

Например, ChatGPT в ответ на запрос о конкретном человеке может выдумать несуществующую биографию, приукрасив ее различными ложными фактами. Такое поведение больших языковых моделей повышает риски их использования в тех отраслях, где цена ошибки особенно высока.

Большие языковые модели пока не умеют делать сложные логические выводы, к которым способен приходить эксперт в своей области, сопоставляя множество факторов и специфических знаний.

Потенциал влияния ИИ на экономику и рынок труда

В целом проникновение ИИ в отдельных отраслях, где цена ошибки высока, например в медицине при постановке диагноза или в юриспруденции при вынесении решения по делу, происходит медленнее, чем в финтехе или электронной коммерции. Бизнесу из разных отраслей экономики еще предстоит оценить потенциал применения больших языковых моделей, а исследователям данных и NLP-инженерам — ответить на вопрос, можно ли добиться развития больших языковых моделей (LLM) до уровня Artificial General Intelligence (AGI) — общего искусственного интеллекта, превосходящего естественный, биологический. На мой взгляд, поскольку большие языковые модели сейчас стремительно развиваются, ответы на эти вопросы мы сможем получить в течение 2024–2025 годов. Гонка технологических «вооружений» уже началась.

Если какая-либо страна по какой-то причине сможет единственной в мире перейти к AGI, экономический баланс сил в мире драматически изменится в ее пользу. Переход к AGI с точки зрения потенциала влияния на этот мир будет сопоставим с созданием ядерного оружия.

Даже самые консервативные оценки свидетельствуют не только о грядущих трансформациях на рынке труда и в экономике, но и о серьезных социальных, демографических, политических и психологических изменениях. Например, аналитики Goldman Sachs пришли к выводу, что генеративный ИИ может заменить человека как минимум в 18% рабочих задач и повлиять на 300 млн рабочих мест по всему миру. По данным Всемирного экономического форума, до 2028 года четверть всех рабочих мест трансформируется в результате внедрения ИИ, цифровизации и других экономических изменений.

Общий ИИ как логический вызов исследователям данных

Основные барьеры при переходе к AGI сегодня — отсутствие логического мышления и все еще невысокий уровень доменной экспертизы больших языковых моделей.

То есть нынешние модели обладают широкими знаниями о мире, но пока не умеют ими эффективно пользоваться для решения комплексных задач, требующих анализа фактов и критического мышления.

Представьте школьника, который нашел правильные ответы на тест и зазубрил их. Он сможет пройти тестирование на хорошую оценку, но понимать предмет он не будет. Этот ученик не сможет проанализировать другую информацию по теме, не ответит правильно на новые вопросы. Так и с моделью: если не научить ее разбираться, искать узкоспециализированные источники знаний, перепроверять сведения и логически рассуждать, то сама она этого не сделает.

Например, большой языковой модели в области права можно «скормить» все федеральные законы, распоряжения, уточняющие письма ведомств. Но для решения проблемы клиента, на машину которого упало дерево, будет недостаточно информационной справки о законах, которыми регулируется эта ситуация. Необходимо решение конечной пользовательской проблемы — получения компенсации от управляющей компании и восстановления в правах.

В процессе работы над кейсом юрист смотрит не только на законы и подзаконные акты; он изучает судебную практику, оперирует принципами права, а также анализирует текущую общественную и политическую ситуацию. Сопоставив всю имеющуюся у него информацию, он может дать более точные рекомендации о действиях в той или иной ситуации на основе своей экспертизы и опыта.

Экспертиза приобретается не только из учебников и книг, часто она приходит с опытом работы в отрасли и знаниями о смежных сферах жизни и бизнеса. Доменная экспертиза — это практические знания в конкретной области жизни или отрасли экономики. Для решения практической юридической задачи и получения финансового эффекта за счет сокращения времени, которое юристы обычно тратят на подобные задачи, нам необходимо переложить доменную экспертизу юриста на комплексное ИИ-решение.

Для этого нам понадобится усилить возможности основной большой языковой модели за счет создания механизмов взаимодействия с другими моделями, сервисами, системами и программным обеспечением. Для получения синергии от такого взаимодействия в отдельных отраслях (доменах) нам потребуется формализовать и оцифровать специфические доменные знания, переложив доменную экспертизу в базы данных. Дойти до высокого уровня автоматизации процессов и обучить на доменных данных модели ИИ, которые будут эффективно решать специфические доменные задачи, помогая основной большой языковой модели принимать комплексные решения.

Формирование эффективного подхода к такому взаимодействию и есть попытка научить большую языковую модель логическому мышлению. Когда нечто подобное будет реализовано в различных областях жизни, секторах бизнеса и отраслях экономики, человечество подойдет к так называемому общему ИИ, или AGI. Это вызов, который сейчас стоит перед NLP-инженерами и исследователями данных.

Риски для человека при переходе к новой ИИ-реальности

Переход к AGI может иметь не только серьезные экономические и социальные последствия, о которых мы говорили выше, но и спровоцировать риски в части этики, безопасности и потери контроля над подобными системами.

В частности, в результате смены парадигмы отношения человечества к ИИ существует риск абсолютного доверия людей к искусственному интеллекту и, как следствие, значительной зависимости людей при принятии решений от систем на базе ИИ. Например, врачам, военным или судьям будет сложнее принимать независимые от нейросетей решения, поскольку такая «самодеятельность» в будущем может нести для специалиста юридические последствия. Отдельным специалистам на местах бюрократически будет проще соглашаться с ИИ.

Если развитые LLM попадут в руки злоумышленников, их можно будет использовать для преступных целей, в том числе для поляризации мнений и распространения фейковой информации. На людей, которые привыкнут верить в правильность ответов нейросетей, можно оказывать влияние и управлять их мнением. При этом большинство LLM достаточно уязвимы при кибератаках в части утечек конфиденциальной информации и персональных данных.

Кроме того, мы не можем быть полностью уверенными в том, что ИИ не захочет избавиться от биологического интеллекта и не начнет препятствовать доступу к управлению системами искусственного интеллекта. Вполне возможно, что существуют риски, которые сейчас даже трудно предсказать.

Поэтому критически важно прорабатывать подходы к предотвращению реализации подобных угроз, в том числе способы физического уничтожения дата-центров, на которых работают и обучаются модели.

Для контроля над развитием ИИ странам нужно разработать соответствующие законы и нормативные акты. Для использования моделей в отдельных отраслях экономики потребуются стандарты, определяющие разработку, тестирование и применение ИИ. Также понадобятся этические кодексы и международные соглашения в сфере использования ИИ, чтобы она соответствовала общественным ценностям и нормам.

Генеративные сети с трансформерной архитектурой уже доказали нам, что ИИ может сравниться со способностями человеческого интеллекта. Но специалисты выходят на следующий уровень более глубокого обучения больших языковых моделей различным сферам жизни (доменам), чтобы сети смогли приносить значимый экономический эффект. Если или когда мы приблизимся к AGI, искусственный интеллект будет не только сопоставим с человеческим, но и превзойдет его по своим возможностям.

Фото: Михаил Гребенщиков для РБК

Хочешь стать одним из более 100 000 пользователей, кто регулярно использует kiozk для получения новых знаний?
Не упусти главного с нашим telegram-каналом: https://kiozk.ru/s/voyrl

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Крах идеала Крах идеала

Что такое красота? Универсальна ли она для всех?

Вокруг света
Очень важные персональные данные Очень важные персональные данные

На что повлияет ужесточение наказания за незаконный сбор личных данных граждан

Монокль
Много шума — и ничего Много шума — и ничего

Антирейтинг — топ-7 наиболее значимых технологических провалов нашего времени

РБК
Киборги нашего времени Киборги нашего времени

Реабилитационная наука задает глобальные тренды в медицине и биохакинге

Монокль
Евгений Колбин: «Мы построили бизнес-процессы вокруг клиента» Евгений Колбин: «Мы построили бизнес-процессы вокруг клиента»

Евгений Колбин рассказал о том, как развиваются облака в России

РБК
Шимпанзе отобрал добычу у орла Шимпанзе отобрал добычу у орла

Зоологи стали свидетелями того, как вожак группы шимпанзе отобрал у орла добычу

N+1
Сергей Шумский: «У роботов не будет инстинкта власти, как у человека» Сергей Шумский: «У роботов не будет инстинкта власти, как у человека»

Минувший год имеет шансы войти в историю как время взрывного роста нейросетей

РБК
Реальность под знаком рыбы Реальность под знаком рыбы

Она — рыбка-кормилица — без всякого преувеличения, поистине Золотая рыбка

Знание – сила
Рубен Ениколопов: «В вопросах на миллиарды долларов нельзя консультироваться с ChatGPT» Рубен Ениколопов: «В вопросах на миллиарды долларов нельзя консультироваться с ChatGPT»

Рубен Ениколопов: сможет ли Россия в одиночку совершить технологический рывок

РБК
Кто стал прототипами главных героев «Слова пацана» Кто стал прототипами главных героев «Слова пацана»

Какими были настоящие «пацаны» из казанских ОПГ?

Maxim
Эти странные силы инерции Эти странные силы инерции

Силы инерции — очень необычны

Наука и жизнь
Зачем подводить итоги года и как сделать это грамотно Зачем подводить итоги года и как сделать это грамотно

Как итоги старого года помогут сделать будущий год еще продуктивнее

Maxim
Иллюзия успеха Иллюзия успеха

Четыре истории о талантливых мастерах пускать пыль в глаза

Популярная механика
ChatGPT, лунная миссия и мышата от двух отцов ChatGPT, лунная миссия и мышата от двух отцов

Редакция Nature назвала героев из мира науки 2023 года

N+1
Зимний пейзаж после боя Зимний пейзаж после боя

Весной 1938 года между СССР и Финляндией начались тайные переговоры

Дилетант
Мочить в сатире Мочить в сатире

Сатирические издания всегда играли в советском обществе особую роль

Правила жизни
Чайная дорога России Чайная дорога России

Где проходил когда-то Великий чайный путь и шли караваны лошадей и верблюдов

Знание – сила
«Не вычеркивай меня из списка»: как Дина Рубина рассказывает о женщинах ее семьи «Не вычеркивай меня из списка»: как Дина Рубина рассказывает о женщинах ее семьи

Глава из сборника семейных историй Дины Рубиной «Не вычеркивай меня из списка»

Forbes
Революция Ноама Хомского Революция Ноама Хомского

7 декабря 2023 года исполняется 95 лет Ноаму Хомскому

Наука
Треугольник печали Треугольник печали

Как устроены любовные треугольники

Men Today
Сам себе психолог: как найти внутреннюю опору Сам себе психолог: как найти внутреннюю опору

Как взрастить внутренний стержень?

Правила жизни
На все четыре стороны На все четыре стороны

Куда отправиться в путешествие за настоящей зимней сказкой?

Добрые советы
Современные «Отцы и дети»: психологический разбор героев нового российского сериала «Цикады» Современные «Отцы и дети»: психологический разбор героев нового российского сериала «Цикады»

На что могут повлиять детско-родительские отношения? Разбираем на «Цикадах»

Psychologies
Зачем нужна «пауза в отношениях» и вдруг это манипуляция? Зачем нужна «пауза в отношениях» и вдруг это манипуляция?

Как «пауза в отношениях» может оказаться попыткой надавить на вас

Psychologies
Архитектурная основа Архитектурная основа

Нестандартная двухуровневая квартира в стиле минимализм

Идеи Вашего Дома
«Коты полезны для здоровья?»: как работает фелинотерапия «Коты полезны для здоровья?»: как работает фелинотерапия

Как повседневное общение с кошками приводит к исцелению тела и души?

Psychologies
Прадедушка современных дронов: как был устроен беспилотный самолет-торпеда времен Первой мировой Прадедушка современных дронов: как был устроен беспилотный самолет-торпеда времен Первой мировой

Почему история воздушной торпеды Чарльза Кеттеринга закончилась плачевно

ТехИнсайдер
Кокошник дамы червей Кокошник дамы червей

Как образ Великой княгини Ксении Александровны стал прототипом игральной карты

Seasons of life
Лидеры и мнения Лидеры и мнения

Как за 25 лет изменились телевидение и люди, которые его создают?

Правила жизни
Коврик не понадобится: 5 простых упражнений для пресса, которые можно делать стоя Коврик не понадобится: 5 простых упражнений для пресса, которые можно делать стоя

Не любишь скручиванию и планку? Есть другие варианты для прокачки пресса!

VOICE
Открыть в приложении