Как устроен объяснимый ИИ и какие проблемы он решает

РБКHi-Tech

Интеллект, понятный каждому

Как устроен объяснимый ИИ и какие проблемы он решает

Автор: Мария Решетникова

Современные разработки в сфере искусственного интеллекта упираются в проблему «черного ящика», которая ставит под сомнение объективность и точность моделей. Решением может стать прозрачный и объяснимый ИИ.

Объяснимый искусственный интеллект представляет собой следующий шаг в развитии ИИ, который сделает технологию более понятной и прозрачной. Внедрение объяснимого ИИ позволит расширить сферу его применения на отрасли, которые работают с потенциально чувствительными данными,— медицину, финансы, судопроизводство и другие.

Что такое объяснимый ИИ

Объяснимый ИИ (Explainable AI, XAI)—это направление исследований в области искусственного интеллекта. Оно стремится создать системы и модели, способные объяснять свои действия и принимать решения понятным для людей образом, чтобы повысить доверие к ИИ. Объяснимый ИИ используется для описания алгоритмов, а также ожидаемых последствий их работы и возможных отклонений. Для этого используются методы визуализации, более простые алгоритмы, а также интерактивные интерфейсы с подсказками.

Благодаря XAI, а также объяснимым процессам машинного обучения организации могут получить доступ к процессам принятия решений, лежащим в основе технологии, и вносить в них коррективы. Он также позволяет улучшить взаимодействие с пользователями, повышая доверие с их стороны.

Характеристики XAI

Объяснимый ИИ должен включать в себя три основных элемента.

Точность прогноза. Запустив моделирование и сравнив выходные данные XAI с результатами в наборе обучающих данных, можно определить точность работы модели. Самый популярный метод, используемый для этого,—это локальные интерпретируемые модельно-агностические объяснения (LIME), которые позволяют объяснить каждый прогноз нейросети. Они анализируют входные данные после того, как те проходят через алгоритм, и сравнивают полученный результат с прогнозируемым. Для этого LIME используют собственный специально обученный на этих данных алгоритм. Сравнение позволяет понять ход рассуждения исходной нейросети.

Прослеживаемость. Она достигается в том числе за счет ограничения способов принятия решений и установления более узкой области применения правил и функций машинного обучения. Примером метода отслеживания XAI является DeepLIFT (Deep Learning Important FeaTures—важные функции глубокого обучения), который сравнивает работу каждой точки («нейрона») нейросети с эталонным показателем и показывает зависимости между ними.

Объясняемость и интерпретируемость. Это показатели, которые отображают, насколько наблюдатель может понять причину принятия решения, а также предсказать вероятность успеха работы модели. Существуют специальные технологии, которые обеспечивают визуализацию этих показателей. Например, What-if—инструменты для визуального исследования поведения обученных моделей, тестирования их производительности в гипотетических ситуациях и анализа важности различных функций данных.

Преимущества XAI

Внедрение объяснимого ИИ дает ряд положительных эффектов как в коммерческом, так и в государственном секторах:

  • повышение производительности, более быстрое выявление ошибок в модели;
  • укрепление доверия со стороны клиентов и пользователей;
  • снижение регуляторных и других рисков.

В некоторых странах внедрение объяснимого ИИ станет обязательным требованием для компаний со стороны государств. Европарламент уже принял закон под названием AI Act, который устанавливает правила и требования для разработчиков моделей ИИ. Они должны обеспечить прозрачность работы таких систем.

Технологии XAI

Для создания объяснимого ИИ применяются следующие основные техники машинного обучения:

  • деревья решений выдают четкое визуальное представление процесса принятия решений ИИ;
  • системы на основе правил выводят алгоритмические правила работы в понятном для человека формате;
  • байесовские сети, или модели вероятностей, которые показывают причинно-следственные связи в работе алгоритма и объясняют неопределенности;
  • линейные модели демонстрируют, как каждый входной параметр влияет на решение нейросети.

Перспективы внедрения XAI

Несмотря на все плюсы XAI, внедрение такого ИИ сталкивается с рядом препятствий, таких как:

отсутствие консенсуса по определениям нескольких ключевых понятий—некоторые исследователи используют термины «объяснимость» и «интерпретируемость» как синонимы, а другие четко разделяют их;

недостаток практических рекомендаций по поводу того, как выбирать, внедрять и тестировать XAI;

отсутствие понимания, должен ли объяснимый ИИ быть понятным для обычных пользователей.

Отдельные исследователи предложили идею «белого ящика», или моделей, которые будут объяснимыми и прозрачными. Так, систему ИИ можно разбивать на модули, каждый из которых может быть интерпретирован, либо изначально строить модели с соблюдением правил прозрачности, чтобы разработчик не терял контроль над ситуацией.

Однако другие эксперты считают, что и «белый ящик» не решит проблему доверия к ИИ со стороны людей, у которых нет технического образования. По их мнению, XAI и объяснимый ИИ — это лишь часть более широких усилий для создания искусственного интеллекта, работа которого будет понятна любому человеку.

Тайны «черного ящика»

XAI использует специальные методы, позволяющие отслеживать и объяснять каждое решение, принятое в процессе машинного обучения. ИИ же обучается с помощью алгоритма, архитектура которого не до конца понятна. Эту проблему принято называть «черным ящиком»: даже если система дает точные ответы, зачастую сложно выяснить, как именно она пришла к такому решению.

Аналогичным образом сложно понять, когда именно система начала ошибаться в ответах и чем это было вызвано. Профессор компьютерных наук Университета Луисвилля Роман Ямпольский в своей работе «Необъяснимость и непостижимость искусственного интеллекта» отмечал: «Если все, что у нас есть,—это «черный ящик», то невозможно понять причины сбоев и повысить безопасность системы. Кроме того, если мы привыкнем принимать ответы ИИ без объяснения причин, мы не сможем определить, не начал ли он давать неправильные или манипулятивные ответы. Это чрезвычайно опасная дорога, на которую мы ступаем».

Преимущества «черного ящика» заключаются в том, что такое обучение происходит быстрее и стоит дешевле, а также позволяет давать системе для обучения сразу большой массив данных. Современные модели, такие как GPT и Alpha Zero, обучаются именно по модели «черного ящика». Так, OpenAI —разработчик ChatGPT, DALL-E и других ИИ-систем—не стала раскрывать набор данных, использованных для обучения модели GPT-4.

Участники сообщества раскритиковали действия компании, отметив, что они затрудняют разработку средств защиты от угроз, исходящих от систем ИИ. Вице-президент по информационному дизайну Бен Шмидт, который работает в стартапе моделей ИИ с открытым исходным кодом Nomic AI, считает, что выход GPT-4 «может положить конец «открытому» ИИ».

Такой подход имеет и другие негативные стороны—в «черном ящике» сложнее выявить предвзятость алгоритма и оценить качество входных данных. На эту проблему указали исследователи из Пало-Альто, центра Кремниевой долины. Они отмечали, что при обучении больших языковых моделей используются массивы данных из интернета, которые не отражают интересы всех групп населения, поскольку у некоторых из них просто нет доступа к Cети.

Хочешь стать одним из более 100 000 пользователей, кто регулярно использует kiozk для получения новых знаний?
Не упусти главного с нашим telegram-каналом: https://kiozk.ru/s/voyrl

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Наталья Царевская-Дякина: «Возможно, школ и вузов в привычном нам понимании когда-нибудь не станет» Наталья Царевская-Дякина: «Возможно, школ и вузов в привычном нам понимании когда-нибудь не станет»

Как будет меняться система образования и что такое концепция life-work learning

РБК
Кнут Гамсун Кнут Гамсун

Кнут Гамсун говорил от имени нации и тем сильно её скомпрометировал

Дилетант
Сергей Шумский: «У роботов не будет инстинкта власти, как у человека» Сергей Шумский: «У роботов не будет инстинкта власти, как у человека»

Минувший год имеет шансы войти в историю как время взрывного роста нейросетей

РБК
Банк России намерен регулировать покупку квартир в рассрочку Банк России намерен регулировать покупку квартир в рассрочку

Рассрочка для квартир – полезный инструмент продаж, хотя и несет в себе риски

Ведомости
Движение вокруг недвижимости Движение вокруг недвижимости

Как искусственный интеллект захватывает один из ключевых рынков

РБК
Александр Лабас: не авангардист, не соцреалист Александр Лабас: не авангардист, не соцреалист

Голос А. Лабаса — сложный, полифоничный, подчас ускользающий от прямых смыслов

Монокль
Евгений Колбин: «Мы построили бизнес-процессы вокруг клиента» Евгений Колбин: «Мы построили бизнес-процессы вокруг клиента»

Евгений Колбин рассказал о том, как развиваются облака в России

РБК
10 неожиданных вопросов Кате Гусевой 10 неожиданных вопросов Кате Гусевой

Расспросили королеву ремиксов Катю Гусеву о вере в приметы и любви к собакам

VOICE
Рубен Ениколопов: «В вопросах на миллиарды долларов нельзя консультироваться с ChatGPT» Рубен Ениколопов: «В вопросах на миллиарды долларов нельзя консультироваться с ChatGPT»

Рубен Ениколопов: сможет ли Россия в одиночку совершить технологический рывок

РБК
Опять и опять «Назад в будущее» Опять и опять «Назад в будущее»

Краткая история ленты «Назад в будущее», вырастившей последнее поколение XX века

Weekend
Королеву — под нож Королеву — под нож

Какой была жизнь и смерть Марии-Антуанетты

Дилетант
Буль-буль Буль-буль

Фантастический рассказ Владислава Кулигина «Буль-буль»

Знание – сила
Безграничное будущее Безграничное будущее

Почему люди мечтают об объединении всех государств в одно

РБК
Через санкции к росту Через санкции к росту

Как российская экономика ищет способы сотрудничества с глобальными игроками

Эксперт
Как экономить, если денег и так ни на что не хватает? Способы, которые работают Как экономить, если денег и так ни на что не хватает? Способы, которые работают

Как экономить еще сильнее, если ты уже экономишь?

VOICE
В такси на Дубровку В такси на Дубровку

Ищешь живописное место для фотосессии? Советские фильмы знают ответ!

Лиза
Сезон слабого зернового экспорта Сезон слабого зернового экспорта

Основная причина сокращения поставок зерна по итогам сезона 2024/25

Агроинвестор
Москва на экране Москва на экране

Почему регионы готовы доплачивать за съемки фильмов на своей территории

Эксперт
Пустые кресла и забытые письма: одиночество как экспонат Пустые кресла и забытые письма: одиночество как экспонат

Мы приезжаем в музей смотреть не на экспонаты, а внутрь себя

Знание – сила
Тюрьма народов Тюрьма народов

Как побег из Алькатраса лишь укрепил имидж легендарной тюрьмы

Дилетант
Как Ленин дэвов побеждал Как Ленин дэвов побеждал

Какие отпечатки оставили на народах России события на рубеже XIX и XX веков

Дилетант
Дорогой инноваций Дорогой инноваций

Что изменит высокоскоростная магистраль Москва — Санкт-Петербург

Эксперт
Архив богини Фауны Архив богини Фауны

Зоологический музей Московского университета – «отражение самой природы»

Знание – сила
Сити-брейк Сити-брейк

Идеальные города России для семейного уик-энда

Лиза
Земля на стыке гипотез Земля на стыке гипотез

Земля в процессе своего развития расширялась или сжималась?

Знание – сила
О чем молчат рекорды HoReCa О чем молчат рекорды HoReCa

Будут ли все последствия смещения потребления с кухни в ресторан положительными?

Агроинвестор
Поверив Гомеру… Поверив Гомеру…

Действительно ли Троя — это тот город, о котором идёт речь в «Илиаде»?

Дилетант
Традиционная стабильность Традиционная стабильность

Какое место в энергетике будущего будут занимать уголь, нефть и газ

Ведомости
Соло-мама Соло-мама

Каких ошибок стоит избегать женщинам, которые растят детей в одиночку

Лиза
Золотой век английской карикатуры Золотой век английской карикатуры

«Отечество карикатуры и пародии» — об Англии Георгианской эпохи

Дилетант
Открыть в приложении