Прибор ночного видения стал деталью для космических технологий

Наука и жизньHi-Tech

Новая жизнь фотокатода

Привычный прибор ночного видения позволил новосибирским физикам создать первые в мире источник спин-поляризованных электронов на основе фотокатода и спиновый триод, а также уникальные фотоприёмники для отечественного космического проекта «Спектр-УФ».

Доктор физико-математических наук Олег Терещенко, профессор РАН, заведующий лабораторией физики и технологии гетероструктур Института физики полупроводников им. А. В. Ржанова СО РАН. Материал подготовила Наталия Лескова.

Фотокатоды цезий-йод — ключевая часть электронно-оптических преобразователей для «глаз» обсерватории «Спектр-УФ». Фото Надежды Дмитриевой

Современная полупроводниковая электроника, в середине XX века пришедшая на смену вакуумным электронным лампам, привела к огромным достижениям и дала нам массу возможностей. Однако уже достаточно давно стало понятно, что её прогресс не бесконечен. Рано или поздно, а точнее уже скоро, она подойдёт к своему пределу. Но что придёт ей на смену? В 1980-х годах появились полупроводниковые устройства с вакуумным зазором вместо диэлектриков. Это даже породило выражение «Back to the Future» («назад в будущее»). Примерно в то же время родилась и спинтроника, активно развиваемая последние 30 лет (см. статью: А. Понятов «Спин: ориентация в будущее»,«Наука и жизнь» № 4, 2016 г. — Прим. ред.). Дело в том, что электрон помимо таких интуитивно понятных характеристик, как масса и заряд, обладает спином — собственным магнитным моментом. Одна из основных задач спинтроники — научиться управлять электронами через их спин. Расчёты показывают, что это должно быть значительно менее энергозатратно и гораздо быстрее, чем в традиционной полупроводниковой электронике, основанной на управлении зарядом. Наша научная группа сумела объединить эти два подхода и начала развивать новое направление, которое назвали вакуумной спинтроникой. А оттолкнулись мы от уже привычного фотокатода, основного элемента, например, такого устройства, как прибор ночного видения.

Работа многих фотоэлектронных приборов связана с фотоэффектом — хорошо известном из школьного курса физики физическом явлении, объяснённом Эйнштейном, за что он был удостоен Нобелевской премии по физике в 1921 году. Внешний фотоэффект состоит в том, что фотоны вырывают с поверхности металла или полупроводника электроны, и таким образом те становятся свободными. Почти вся физика приборов, о которых мы будем говорить, основана на этом эффекте для полупроводников. В случае вакуумных приборов электроны из фотокатода выбрасываются в окружающий вакуум.

Сложность в том, что не так просто вырвать электрон из твёрдого тела, необходимо преодолеть работу выхода материала. А для этого требуется относительно большая энергия — 5—6 электронвольт (эВ), что соответствует ультрафиолетовому излучению. Отчасти по этой причине в нашей обыденной жизни практически отсутствуют свободные электроны — электронный газ. Для значительного снижения работы выхода и получения эффективного фотоэмиттера (в идеале на каждый поглощённый фотон из него должен вылетать электрон) на поверхность полупроводника наносят или адсорбируют буквально один монослой электроположительных атомов щелочных металлов, толщина которого составляет всего 1 нанометр.

Если мы уменьшаем работу выхода материала, снижая тем самым барьер для выхода электронов, то сможем выбивать электроны из вещества, облучая его фотонами гораздо меньшей энергии, более длинноволновым излучением. В результате получается довольно эффективно вырывать электроны, освещая полупроводниковый катод излучением с длинами волн в диапазоне 700—900 нм (это соответствует энергии фотона 1,4—1,7 эВ), то есть инфракрасным излучением, которое наш глаз не воспринимает. Напомню, что наш глаз чувствителен к длинам волн в диапазоне 400—700 нм. Далее приложенная разность потенциалов, как в телевизорах с кинескопом, направляет вырванные электроны на люминофорный экран, что позволяет увидеть картину, создаваемую инфракрасным излучением. Так работает прибор ночного видения, или, как его ещё называют, электронно-оптический преобразователь.

В каком-то смысле мы провели «конверсию» и сделали на основе прибора ночного видения два типа приборов, которые можно отнести к области спинтроники, — это вакуумный спиновый диод и спиновый триод.

Если создать поток электронов с одинаково ориентированным спином, то этот поток электронов будет называться спин-поляризованным. Такой поток можно создать, например, освещая полупроводниковый фотокатод поляризованным светом, фотонами, которые имеют определённую круговую поляризацию. Три года назад нам удалось открыть новый эффективный источник спин-поляризованных электронов на основе мультищелочного фотокатода (Na2KSb)*. Следующим шагом нам нужно было научиться эффективно детектировать спин электрона, а для этого необходим спин-детектор.

*Phys. Rev. Lett 129, 166802 (2022).

Красивой идеей оказалась возможность создания детектора, по устройству такого же, как источник спин-поляризованных электронов. Это позволяет симметрия относительно обращения времени уравнений Шрёдингера и Максвелла, которые описывают электрон и его взаимодействия: если обратить время, то есть направить электрон обратно в фотокатод, то этот электрон рано или поздно рекомбинирует с дыркой и высветит фотон, который будет иметь поляризацию электрона. А по измерению поляризации фотонов мы сможем сказать о поляризации электронов.

Но затем мы придумали значительно более стабильный и удобный в использовании спин-детектор**. Нам удалось сделать спин-фильтр, который представляет собой очень тонкую ферромагнитную плёнку, фактически это наномембрана толщиной всего от 3 до 5 нанометров. Если намагнитить эту ферромагнитную наномембрану в определённом направлении, то её прохождение оказывается разным для электронов с разной поляризацией (спином). В результате проходят только те электроны, поляризация которых совпадает с направлением намагниченности ферромагнитной наномембраны. То есть при прохождении такой плёнки поляризованными электронами происходит их фильтрация по спину. Это очень похоже на работу оптического линейного поляризатора. Например, в повседневной жизни мы сталкиваемся с этим явлением, используя поляризационные очки. Электрон, в отличие от фотонов, не поглощается, он есть всегда (за исключением случаев, когда мы имеем дело с физикой высоких энергий). Но аналогия с оптикой тут напрашивается.

**Phys. Rev. Lett 134, 157002 (2025).

В конечном счёте измеряется ток прошедших электронов и, таким образом, получается спин-детектор. Причём это первое в мире устройство, в котором детектирование спина электронов осуществляется с помощью их фильтрации через наномембрану. Кроме того, это и первый в мире спин-детектор с пространственным разрешением, в котором возможна передача изображения в поляризованных электронах, что позволяет собрать на несколько порядков больше информации в единицу времени. Эффективность нашего прибора значительно выше, чем у других существующих детекторов спина электронов, а срок службы дольше — годы.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

По вертикальной траектории По вертикальной траектории

Об одной вещи, без которой жизнь горожанина превратится в кошмар

Наука и жизнь
Ксения Хаирова Ксения Хаирова

О Валентине Талызиной, актрисе поистине уникальной

Караван историй
Точка роста техлидеров Точка роста техлидеров

Как в Сколково создают среду для развития высокотехнологичных проектов

Эксперт
Крупным планом: что происходит с отечественным кинорынком Крупным планом: что происходит с отечественным кинорынком

Какое кино сейчас интересно зрителям в России?

Inc.
Боевые слоны Боевые слоны

Почему боевые слоны считались идеальным оружием древности?

Дилетант
Жизнь без гаджетов Жизнь без гаджетов

Как прекратить сидеть в телефоне: 9 шагов к цифровой свободе

Лиза
От «коробочек» — к нелинейной архитектуре От «коробочек» — к нелинейной архитектуре

Как может выглядеть архитектура XXI века?

Монокль
«Ревность о Севере: Прожектерское предпринимательство и изобретение Северного морского пути в Российской империи» «Ревность о Севере: Прожектерское предпринимательство и изобретение Северного морского пути в Российской империи»

Почему предпринимателей интересовала печорская древесина

N+1
Нехимические зависимости: что это такое, как их распознать и победить Нехимические зависимости: что это такое, как их распознать и победить

Вы просыпаетесь и сразу тянетесь к телефону?

Maxim
Взять кредит и подумать Взять кредит и подумать

Банки будут выдавать кредиты от 50 000 рублей с «периодом охлаждения»

Ведомости
Как запустить посудомоечную машину первый раз — инструкция и советы Как запустить посудомоечную машину первый раз — инструкция и советы

Как правильно запускать посудомоечную машину первый раз?

CHIP
Одежда и надежды Одежда и надежды

Красивые книги о моде

Weekend
Биология эльфов Биология эльфов

Чем эльфам пришлось бы «пожертвовать» в обмен на вечную жизнь?

Вокруг света
Академик Петр Чумаков: вирусы позволяют увидеть раковые клетки и сформировать иммунный ответ Академик Петр Чумаков: вирусы позволяют увидеть раковые клетки и сформировать иммунный ответ

Вирусы дают надежду в лечении самых злокачественных видов рака

Наука
Как правильно зарядить телефон: простые правила, которые сберегут его аккумулятор Как правильно зарядить телефон: простые правила, которые сберегут его аккумулятор

Что влияет на срок службы аккумулятора и как правильно заряжать телефон

CHIP
Животные Камчатки и трудничество на Валааме: где в России есть волонтерские программы Животные Камчатки и трудничество на Валааме: где в России есть волонтерские программы

Волонтерские программы в России: от Камчатки до Санкт-Петербурга

Forbes
Органический радикал нарушил правило Каши Органический радикал нарушил правило Каши

Анион-радикал замещенного арена может нарушать правило Каши

N+1
Листоносы собрали падалицу Листоносы собрали падалицу

Зоологи обнаружили свидетельства, что рукокрылые подбирают пищу с земли

N+1
Боди-хоррор как реальность Боди-хоррор как реальность

Каким получился фильм о созависимых отношениях «Одно целое»

Weekend
«Не слияние, а бордель»: как создатели «Южного парка» стали миллиардерами «Не слияние, а бордель»: как создатели «Южного парка» стали миллиардерами

Как мультсериал для взрослых о четырех мальчиках стал прибыльным феноменом?

Forbes
На кроманьонской стоянке в Кракове насчитали остатки как минимум 113 мамонтов На кроманьонской стоянке в Кракове насчитали остатки как минимум 113 мамонтов

Ученые проанализировали останки животных из граветтийского Краков-Спадзиста

N+1
Наш ответ ChatGPT: как российские стартапы делают бизнес на генеративном ИИ Наш ответ ChatGPT: как российские стартапы делают бизнес на генеративном ИИ

Что происходит на рынке генеративного ИИ в России и мире

Inc.
План города-сада План города-сада

Как «Росатом» готовит город-сад в Казахстане на берегу Балхаша

Ведомости
Марат Хуснуллин: 19% девелоперов сегодня находятся в зоне риска Марат Хуснуллин: 19% девелоперов сегодня находятся в зоне риска

Марат Хуснуллин о том, какие времена сейчас переживают девелоперы жилья

Ведомости
Жабрей и зябра, они же пикульники Жабрей и зябра, они же пикульники

Пикульники — настоящие джентльмены среди растения, хотя и каждый со своим нравом

Наука и жизнь
Что цвет зубов может рассказать о вашем здоровье? Что цвет зубов может рассказать о вашем здоровье?

Как цвет зубов может указывать на серьезные проблемы со здоровьем

ТехИнсайдер
Лариса Гузеева Лариса Гузеева

Лариса Гузеева о триумфальном возвращении в кино и тестировании партнеров

Собака.ru
Разморозка на слух Разморозка на слух

Как усложнится процесс разблокировки зарубежных активов российских инвесторов

Ведомости
На двух софтах На двух софтах

Почему российские компании продолжают работать на смешанном софте

Ведомости
Искусственные «лепестки» левитируют только за счет солнечного тепла Искусственные «лепестки» левитируют только за счет солнечного тепла

Как работает устройство, способное левитировать в мезосфере

ТехИнсайдер
Открыть в приложении