Судьба научной школы Николая Николаевича Семёнова

Наука и жизньНаука

Цепная реакция, или ветви одного открытия

Кандидат физико-математических наук Василий Птушенко

Фото Василия Птушенко

Сфера научных знаний о мире на протяжении веков непрерывно расширялась, и появление учёных-энциклопедистов неизбежно становилось всё более и более проблематичным. А каким образом происходит это расширение? Как появляются новые области науки, новые направления исследований? Вариантов может быть много. Попробуем проследить судьбу одной научной школы и одного научного института — точнее, целого семейства институтов, созданных этой школой.

Речь о научной школе Николая Николаевича Семёнова — российского физикохимика (или, как о нём отчасти в шутку говорили, — физика, ставшего химиком), открывшего в 1926—1927 годах разветвлённые цепные химические реакции. На первый взгляд, это — частное открытие в одной довольно узкой области, которая сейчас называется «химическая кинетика». Однако на него, как на стержень, оказалась нанизанной вся последующая история больших и малых открытий школы Семёнова. И как из ствола дерева, из него со временем выросли новые крупные ветви, казалось бы, исходно с химической кинетикой никак не связанные: наука о горении и взрыве, как химическом, так и ядерном; химия полимеров; фотохимия; колебательные химические реакции; теории химического катализа и принципы синтеза искусственных алмазов; фотосинтез и фотохимическое преобразование солнечной энергии; физиология зрения и физико-химические исследования рака; технологии пищевых производств и новые методы в медицине.

Эти направления в течение какого-то времени развивались в пределах одного учреждения — Института химической физики (ИХФ), созданного Н. Н. Семёновым в 1931 году на основе одной из лабораторий знаменитого Физико-технического института Абрама Фёдоровича Иоффе; со временем какие-то направления стали «отпочковываться» новыми институтами.

В 1925 году ученики Н. Н. Семёнова Юлий Харитон и Зинаида Вальта обнаружили критические явления (их также называют предельными или пороговыми) в химической реакции — то есть такие, в которых есть некий порог, критическое значение одного из параметров, от преодоления которого зависит весь ход реакции. Харитон и Вальта изучали реакцию окисления фосфора кислородом. Оказалось, что, когда кислорода слишком мало, меньше определённого критического значения, реакция не идёт. Не то чтобы идёт медленнее, а вообще не идёт, что выглядело невероятным, так как привычным в то время было представление о плавном изменении скорости реакции по мере изменения количества реагентов. Достаточно вспомнить закон действующих масс, открытый за 60 лет до этого и предсказывающий линейную зависимость скорости реакции от концентрации каждого из реагентов. В данном же случае всё было совсем не так: пары фосфора вспыхивали, когда концентрация кислорода оказывалась выше пороговой, и полностью потухали при её снижении ниже порога. Сверх того, в последующих экспериментах Семёнова и его коллег (А. И. Шальникова, А. А. Трифонова, А. И. Лейпунского, Ю. Н. Рябинина) обнаружились ещё более загадочные явления: протекание реакции зависело от размера сосуда, а также от добавления в смесь инертных газов; на неё также оказывала влияние электрическая искра, пропущенная через кислород перед подачей его в реакционный сосуд.

Семёнов объяснил эти явления тем, что они — результат протекания разветвлённой цепной химической реакции. То есть такой реакции, в каждом акте которой образуются продукты, инициирующие следующий акт реакции. Причём в каждом акте реакции образуется больше активных продуктов, чем расходуется. В итоге активные продукты (они же — реагенты) размножаются, на каждом следующем шаге в реакционной смеси их оказывается всё больше и больше, и большее количество новых актов реакции запускается. Реакция развивается лавинообразно. Отсюда становится понятна и причина существования порога: вся «игра» идёт вокруг коэффициента размножения активных частиц. Если их будет образовываться меньше, чем расходуется (то есть коэффициент размножения ниже единицы), то цепная реакция не сможет развиться. Но если удастся, меняя какие-то параметры, добиться повышения коэффициента размножения выше единицы, то реакция вспыхнет. Концентрация кислорода, размер сосуда, наличие добавок — инертных газов — всё это меняло коэффициент размножения в опытах Семёнова и его коллег.

Читатель, знакомый с принципом цепной ядерной реакции, лежащей в основе атомного взрыва, наверное, уже заметил её сходство с реакциями, открытыми Семёновым. Разумеется, заметил его и сам Семёнов, и его ученики — Харитон и Зельдович. Когда на границе 1938 и 1939 годов немецкие химики Отто Ган* и Фриц Штрассман обнаружили, что облучение нейтронами ядер урана стимулирует их распад, Харитон и Зельдович занялись расчётом цепной реакции распада ядер урана (в ходе которой также образуются нейтроны). Неудивительно, что спустя несколько лет они оказались среди главных участников советского атомного проекта: Юлий Борисович Харитон стал научным руководителем одного из основных учреждений-разработчиков ядерного оружия, КБ-11 в г. Саров (ставшем известным позже как Арзамас-16), а Яков Борисович Зельдович — фактически главным теоретиком того же КБ. И не только они: из наиболее известных учеников Н. Н. Семёнова с началом советского атомного проекта в КБ-11 ушли Кирилл Иванович Щёлкин (который позже, в середине 1950-х, инициировал создание второго ядерного центра — НИИ-1011 в г. Снежинске, став его первым научным руководителем), Василий Константинович Боболев, Александр Фёдорович Беляев, Альфред Янович Апин, Давид Альбертович Франк-Каменецкий. Но и из тех, кто остался в ИХФ, многие переключились на тематику атомного проекта с 1946 года, когда институт активно включился в эти работы.

* Отто Ган «за открытие расщепления тяжёлых атомных ядер» награждён Нобелевской премией по химии за 1944 год.

Однако атомный взрыв — уже «вторая производная» от открытия Семёнова. А первая производная — процессы «обычного», химического взрыва и горения*. Поэтому с самых первых лет существования Института химической физики в нём шли работы по горению и взрыву. В предвоенные и военные годы это, в первую очередь, — взрывчатые вещества, боеприпасы, порохи. Наиболее известной из работ сотрудников института в данной области, возможно, была работа Я. Б. Зельдовича и О. И. Лейпунского, которые в годы Великой Отечественной войны решили проблему нестабильного горения порохов реактивных снарядов для «Катюш». Разрабатывались в институте и разные варианты двигателей внутреннего сгорания — как для гражданских, так и для военных целей. В послевоенные годы сотрудники института много занимались разработкой твёрдых ракетных топлив — твёрдых веществ или смесей, способных гореть без доступа кислорода.

* Заметим, впрочем, что чаще имеет место не цепной, а тепловой механизм химического взрыва — разогрев смеси из-за быстрого выделения тепла, которое не успевает отводиться наружу, и в итоге происходит автокаталитическое ускорение экзотермической реакции. Изучение теплового механизма взрыва, электрического пробоя и других сходных явлений также было в сфере интересов Н. Н. Семёнова ещё с 1920-х годов.

Но исследования горения и взрыва имели не только военное и даже не только прикладное назначение. Вспомним, что цепной механизм реакции основан на образовании в ходе реакции активных частиц, которые «запускают» следующий акт реакции. Если их образуется больше, чем расходуется, то реакция приобретает автокаталитический характер (явление, названное Семёновым «взаимодействием цепей»). Такой автокатализ может приводить к пороговым (критическим) явлениям. Но он также может приводить и к возникновению колебательного режима протекания химической реакции. Открытие колебательных химических реакций, а вместе с ними и целой области нелинейной динамики, динамического хаоса и т. д. стало одним из символов науки второй половины XX века. И один из истоков этих открытий, как ни удивительно, также связан с исследованиями процессов горения.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Дело об убийстве угличском Дело об убийстве угличском

Дело розыскное 1591 года, об убийстве царевича Дмитрия Иоанновича

Дилетант
Премия ВРАЛ: грустный рептилоид для Премия ВРАЛ: грустный рептилоид для

Торжественная церемония награждения авторов самых популярных лженаучных теорий

Популярная механика
Разгадка истории Венеры кроется в её поверхности Разгадка истории Венеры кроется в её поверхности

Активны ли венерианские вулканы сегодня?

Наука и жизнь
Скифская девочка-воин из Тывы пострадала от рахита Скифская девочка-воин из Тывы пострадала от рахита

Биоархеологи исследовали останки девочки раннескифского времени из Тывы

N+1
Как модель для сборки Как модель для сборки

Шварцвальд: времена меняются, но не все в мире спешит меняться вместе с ними

Вокруг света
Анатолий Зверев: вечная любовь Анатолий Зверев: вечная любовь

Анатолия Зверева любят многие и по-разному

СНОБ
Конец Бонапарта Конец Бонапарта

Наполеон встретил смерть так же хладнокровно, как вражеские ядра и пули

Дилетант
Пять примеров, как автопилот Tesla спасает жизни Пять примеров, как автопилот Tesla спасает жизни

Система автономного вождения способна на многое

Playboy
Время Близнецов. Зимнее небо Время Близнецов. Зимнее небо

Созвездие Близнецов — самое северное зодиакальное созвездие

Наука и жизнь
Вставили сенсор от смартфона и добавили нейросети: зачем стартап Opal попытался заново изобрести веб-камеру Вставили сенсор от смартфона и добавили нейросети: зачем стартап Opal попытался заново изобрести веб-камеру

Получилось ли у стартап Opal создать «лучшее решение для удалённой работы»

VC.RU
Свет и блеск Достоевского Свет и блеск Достоевского

Тернистый путь, пройденный Фёдором Михайловичем Достоевским

Наука и жизнь
К гостю из космоса К гостю из космоса

В Челябинской области появился первый брендовый маршрут

Отдых в России
Экологически чистое зазеркальное молоко Экологически чистое зазеркальное молоко

Макмиллан предложил название новому виду катализа — органокатализ

Наука и жизнь
«Люди так бесчеловечны, так людоедны, они такие животные» «Люди так бесчеловечны, так людоедны, они такие животные»

Игорь Северянин о том, как тяжело жить человеку с тонкой душевной организацией

Weekend
Что красит камень? Что красит камень?

Что делает рубин красным, изумруд — зелёным, а аметист — фиолетовым?

Наука и жизнь
Подведем итоги: лучшие российские сериалы, которые вышли в 2021 году Подведем итоги: лучшие российские сериалы, которые вышли в 2021 году

Собрали все самое-самое, что сами смотрели с удовольствием в 2021 году

Cosmopolitan
В сердце Сицилии В сердце Сицилии

Канноли — лучший воскресный итальянский десерт

Вокруг света
Все слышали про белый шум. Но что такое розовый, коричневый и синий шум? Все слышали про белый шум. Но что такое розовый, коричневый и синий шум?

Сколько цветов шума существует в мире и как они действуют на людей?

Популярная механика
«Уэбб»: наследник великих космических обсерваторий «Уэбб»: наследник великих космических обсерваторий

Чего нам ждать от телескопа имени Джеймса Уэбба?

Наука и жизнь
Как построить 200-крылый самолет: история мультипланов Как построить 200-крылый самолет: история мультипланов

Горацио Филлипс верил — чем больше крыльев у самолета, тем выше он поднимется

Популярная механика
Не можем повторить! Не можем повторить!

Какие настроения царили в странах после завершения Первой мировой войны

Дилетант
Шесть раз поверь Шесть раз поверь

В наши дни вести здоровый образ жизни без калькулятора невозможно

Men’s Health
Теплое оружие: лютейшие клинки, которые не запрещены законом Теплое оружие: лютейшие клинки, которые не запрещены законом

Почему одни клинки считаются холодным оружием, а другие нет?

Maxim
Фото на хрупкую память Фото на хрупкую память

Почему память распознает то, чего в ней нет

N+1
Биоархеологи нашли древнекитайскую женщину-карлика Биоархеологи нашли древнекитайскую женщину-карлика

Женщина-карлик из могильника Бэйшэньцзяцяо в городе Сиань

N+1
Как противостоять хейтерам Как противостоять хейтерам

Чтобы обзавестись хейтерами, не обязательно становиться популярным

GQ
Водолей – холодный, Рыбы – тихие. Самый темпераментный знак зодиака – кто это? Водолей – холодный, Рыбы – тихие. Самый темпераментный знак зодиака – кто это?

Какие знаки зодиака отличаются страстным, ярким темпераментом

Cosmopolitan
Певица Юлия Паршута: «Я взяла полный контроль над своей жизнью» Певица Юлия Паршута: «Я взяла полный контроль над своей жизнью»

Юлия Паршута рассказа о походах к психологу, любви к каверам и творческим планах

Cosmopolitan
«Все подруги замужем, а я?»: как эта установка портит нам жизнь «Все подруги замужем, а я?»: как эта установка портит нам жизнь

Как не сравнивать себя с другими и почему не стоит гнаться за замужеством?

Psychologies
Как 29-летний белорус построил «единорога» в США, помогая детям с аутизмом Как 29-летний белорус построил «единорога» в США, помогая детям с аутизмом

Elemy — «единорог», который помогает детям с аутизмом получать терапию

Forbes
Открыть в приложении