Квантовый квадрат Эйлера поможет cкорректировать ошибки в квантовых вычислениях
Математики сообщили о нахождении квантового квадрата Эйлера шестого порядка, у которого не существует классического аналога. Полученное решение оказалось эквивалентно максимально запутанному состоянию четырех квантовых игральных костей, которое невозможно было бы обнаружить традиционными методами. Результат работы поможет улучшить методы коррекции ошибок при квантовых вычислениях. Исследование опубликовано в Physical Review Letters.
Латинским квадратом называют квадратную матрицу, заполненную элементами некоторого счетного множества таким образом, чтобы в каждой ее строке и каждом столбце каждый элемент множества встречался только один раз. Наиболее известным латинским квадратом можно назвать квадрат 3×3, который необходимо заполнить натуральными числами, играя в судоку. Латинские квадраты нашли применение в комбинаторике, статистике, криптографии и многих других научных разделах.
Их можно усложнить, помещая в ячейки элементы не одного, а двух различных множеств (в этом случае еще говорят про пару ортогональных латинских квадратов). Такие объекты носят название греко-латинских квадратов или квадратов Эйлера в честь знаменитого математика, который активно их изучал. Для небольших размерностей такие структуры можно представить с помощью игральных карт, которые следует разместить таким образом, чтобы все масти и карты всех достоинств встречались в каждой строке и в каждом столбце ровно один раз. Эйлер не нашел греко-латинских квадратов 2×2 и 6×6, но смог построить их для 3, 4 и 5 порядков. Он также высказал гипотезу, согласно которой не существует таких квадратов порядка N=4n+2, где n — натуральное число. Для квадратов 6×6 эту гипотезу аналитически подтвердил Терри в 1901 году, однако спустя почти 60 лет с помощью компьютеров были найдены греко-латинские квадраты 10 и 22 порядков, что опровергло предположение Эйлера.